Startseite Design of a Compact High Gain Microstrip Patch Antenna for Tri-Band 5 G Wireless Communication
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design of a Compact High Gain Microstrip Patch Antenna for Tri-Band 5 G Wireless Communication

  • Ahmed Abdelaziz und Ehab K. I. Hamad EMAIL logo
Veröffentlicht/Copyright: 7. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 73 Heft 1-2

Abstract

In this paper, a Tri-band microstrip-line-fed low profile microstrip patch antenna is proposed for future multi-band 5 G wireless communication applications. The proposed antenna is printed on a compact Rogers RT5880 substrate of dimensions 20×16.5×0.508 mm3 with relative permittivity, εr of 2.2 and loss tangent, tan δ of 0.0009. To improve return loss and bandwidth of the proposed antenna, a partial ground plane technique is employed. The proposed antenna operates at 10, 28, and 38 GHz, three of the selected frequencies which are allocated by the International Telecommunication Union (ITU) for 5 G mobile communications. To reduce interference between the 5 G system and other systems in the band, a pair of T-shaped slots is etched in the radiating patch to reject unwanted frequency bands. The proposed design provides a gain of 5.67 dB at 10 GHz, 9.33 dB at 28 GHz and 9.57 dB at 38 GHz; the radiation pattern is mostly directional. The proposed antenna is designed and optimized using two commercial 3D full-wave software, viz. CST microwave studio and Ansoft HFSS. A prototype of the designed antenna that was fabricated and showed good agreement between the actual measurements of S11 & VSWR and the simulation results using both software.

Acknowledgements

The authors would like to thank Dr Mohamed Ismail and Eng. Gomaa Mahmoud at the Microstrip Department, Electronics Research Institute, Cairo, Egypt for their help in fabricating and testing of the model.

References

[1] M. R. Bhalla and A. V. Bhalla, “Generations of mobile wireless technology: A survey,” Int. J. Comput. Appl., vol. 5, no. 4, pp. 26–32, Aug, 2010.10.5120/905-1282Suche in Google Scholar

[2] A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. Maccartney, T. S. Rappaport, and A. Alsanie, “Radio propagation path loss models for 5 G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands,” IEEE Commun. Mag., vol. 52, no. 9, pp. 78–86, 2014.10.1109/MCOM.2014.6894456Suche in Google Scholar

[3] O. M. Haraz, M. M. M. Ali, S. Alshebeili, and A.-R. Sebak, “Design of a 28/32 GHz dual-band printed slot antenna for the future 5 G mobile and wireless communications,” in IEEE Int Symp Antennas Propag USNC/URSI Nat Radio Sci Meeting, 19–24 Jul. 2015, Vancouver, BC, Canada.10.1109/APS.2015.7305155Suche in Google Scholar

[4] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. D. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5 G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb, 2014.10.1109/MCOM.2014.6736752Suche in Google Scholar

[5] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5 G wireless networks: A comprehensive survey,” ‎IEEE Commun. Surv. Tutor., vol. 18, no. 3, pp. 1617–1655, 2016.10.1109/COMST.2016.2532458Suche in Google Scholar

[6] D. A. Outerelo, A. V. Alejos, M. G. Sanchez, and M. V. Isasa, “Microstrip antenna for 5 G broadband communications: Overview of design issues,” in IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 2443–2444, 19–24 Jul. 2015, Vancouver, BC, Canada.Suche in Google Scholar

[7] M. U. Khan, M. S. Sharawi, and R. Mittra, “Microstrip patch antenna miniaturization techniques: A review,” IET Microw. Antennas P., vol. 9, no. 9, pp. 913–922, 2015.10.1049/iet-map.2014.0602Suche in Google Scholar

[8] A. Rivera-Albino and C. A. Balanis, “Gain enhancement in microstrip patch antennas using hybrid substrates,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 476–479, 2013.10.1109/LAWP.2013.2256333Suche in Google Scholar

[9] S. Rashid and C. K. Chakrabarty, “Bandwidth enhanced rectangular patch antenna using partial ground plane method for WLAN applications,” in Putrajaya Campus: University Tenaga Nasional, 8–9 April, 2015, the 3rd National Graduate.Suche in Google Scholar

[10] T. Chang and J. Lin, “Enhanced return-loss and flat-gain bandwidths for microstrip patch antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 11, pp. 4322–4325, Nov, 2011.10.1109/TAP.2011.2164200Suche in Google Scholar

[11] X.-H. Shen, P. Delmotte, and G. A. E. Vandenbosch, “Enhancing the gain of microstrip antennas at different frequencies with one substrate-superstrate structure,” Microw. Opt. Technol. Lett., vol. 27, no. 1, pp. 37–40, Oct, 2000.10.1002/1098-2760(20001005)27:1<37::AID-MOP11>3.0.CO;2-HSuche in Google Scholar

[12] Y. Zhuang, G. Wang, H. Li, and W. Guo, “Novel high-gain circularly polarized lens antenna using single-layer transmissive metasurface,” Frequenz, vol. 71, no. Issue 5–6, pp. 267–272, Oct. 2016. Doi:10.1515/freq-2016-0089.Suche in Google Scholar

[13] A. Khan and R. Nema, “Analysis of five different dielectric substrates on microstrip patch Antenna,” Int. J. Comput. Appl., vol. 55, no. 18, pp. 6–12, Oct 2012.10.5120/8826-2905Suche in Google Scholar

[14] M. M. M. Ali and A.-R. Sebak, “Dual band (28/38 GHz) CPW slot directive antenna for future 5 G cellular applications,” in IEEE Int. Symp. Antennas Propag (APSURSI), pp. 399–400, 26 Jun- 1 Jul 2016, Fajardo, Puerto Rico.Suche in Google Scholar

[15] M. M. M. Ali, O. Haraz, and S. Alshebeili, “Design of dual-band printed slot antenna with utilizing a band rejection element for the 5 G wireless applications,” in IEEE Int. Symp. Antennas Propag., pp. 1865–1866, 26 Jun- 1 Jul. 2016, Fajardo, Puerto Rico.Suche in Google Scholar

[16] S. Verma, L. Mahajan, R. Kumar, H. S. Saini, and N. Kumar, “A small microstrip patch antenna for future 5 G applications,” in 5th Int. Conf. Reliab, Infocom Technol Optim. (ICRITO), pp. 460–463, 7–9 sept. 2016, Noida, India.10.1109/ICRITO.2016.7784999Suche in Google Scholar

[17] D. T. T. Tu, N. G. Thang, N. T. Ngoc, and V. V. Yem, “28/38 GHz Dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5 G applications,” in Int. Conf. Adv.Technol. Commun. (ATC), pp. 64–69, 18–20 Oct. 2017, Quy Nhon, Vietnam, VietnamSuche in Google Scholar

[18] M. K. M. Amin, M. F. Mansor, N. Misran, and M. T. Islam, “28/38 GHz dual band slotted patch antenna with proximity-coupled feed for 5 G communication,” in Int. Symp. Antennas Propag. (ISAB), 30 Oct-2 Nov, 2017, Phuket, Thailand, Thailand.10.1109/ISANP.2017.8228897Suche in Google Scholar

Received: 2018-02-28
Published Online: 2018-09-07
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2018-0058/html
Button zum nach oben scrollen