Startseite High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications

  • Xiaohang Song , Darko Cvetkovski EMAIL logo , Tim Hälsig , Wolfgang Rave , Gerhard Fettweis , Eckhard Grass und Berthold Lankl
Veröffentlicht/Copyright: 25. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.

Acknowledgements:

This work was supported in part by the German Research Foundation (DFG) in the framework of priority program SPP 1655 “Wireless Ultra High Data Rate Communication for Mobile Internet Access”. The authors contributed equally to this work. We would also like to thank Lukas Landau, Christoph Jans, and the IHP system design department for their valuable contribution to this work.

References

[1] Fettweis G. P., “Foreword LTE: The move to global cellular broadband,” Intel. Technol. J., vol. 18, no. 1, pp. 7–10, 2014.Suche in Google Scholar

[2] Bhushan N., Li J., Malladi D., Gilmore R., Brenner D., Damnjanovic A., Sukhavasi R. T., Patel C., and Geirhofer S., “Network densification: The dominant theme for wireless evolution into 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 82–89, 2014.10.1109/MCOM.2014.6736747Suche in Google Scholar

[3] Fettweis G. P., “The tactile internet: Applications and challenges,” IEEE Veh. Technol. Mag., vol. 9, no. 1, pp.64–70, 2014.10.1109/MVT.2013.2295069Suche in Google Scholar

[4] DragonWave Inc., “Multi-gigabit microwave backhaul with enhanced MC”, pp. 1–9, 2016, White Paper.Suche in Google Scholar

[5] Brady J., Behdad N., and Sayeed A. M., “Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp.3814–3827, 2013.10.1109/TAP.2013.2254442Suche in Google Scholar

[6] Pi Z., Choi J., and Heath R., “Millimeter-wave gigabit broadband evolution toward 5G: Fixed access and backhaul,” IEEE Commun. Mag., vol. 54, no. 4, pp.138–144, 2016.10.1109/MCOM.2016.7452278Suche in Google Scholar

[7] Hur S., Kim T., Love D. J., Krogmeier J. V., Thomas T. A., and Ghosh A., “Millimeter wave beamforming for wireless backhaul and access in small cell networks,” IEEE Trans. Commun., vol. 61, no. 10, pp.4391–4403, 2013.10.1109/TCOMM.2013.090513.120848Suche in Google Scholar

[8] Foschini G. J., “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, 1996.10.1002/bltj.2015Suche in Google Scholar

[9] Telatar I. E., “Capacity of multi-antenna gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585–595, 1999.10.1002/ett.4460100604Suche in Google Scholar

[10] Gao Z., L. Dai, D. Mi, Z. Wang, M. Imran A., and Shakir M. Z., “MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network,” IEEE Wirel. Commun., vol. 22, no. 5, pp.13–21, 2015.10.1109/MWC.2015.7306533Suche in Google Scholar

[11] Driessen P. F. and Foschini G. J., “On the capacity formula for multiple input-multiple output wireless channels: A geometric interpretation,” IEEE Trans. Commun., vol. 47, no. 2, pp. 173–176, 1999.10.1109/ICC.1999.765497Suche in Google Scholar

[12] Calabrò S., Lankl B., and Sebald G., “Multiple co-polar co-channel point-to-point radio transmission,” Int. J. Electron. Commun., vol. 57, no. 5, pp. 1–7, 2003.10.1078/1434-8411-54100206Suche in Google Scholar

[13] Gesbert D., H. Bölcskei, D. Gore A., and Paulraj A. J., “Outdoor MIMO wireless channels: Models and performance prediction,” IEEE Trans. Commun., vol. 50, no. 12, pp.1926–1934, 2002.10.1109/TCOMM.2002.806555Suche in Google Scholar

[14] Haustein T. and Krüger U., “Smart geometrical antenna design exploiting the LOS component to enhance a MIMO system based on rayleigh-fading in indoor scenarios,” in Proc. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun., 2003, pp. 1144–1148.10.1109/PIMRC.2003.1260290Suche in Google Scholar

[15] Larsson P., “Lattice array receiver and sender for spatially OrthoNormal MIMO communication,” in Proc. IEEE 61st Veh. Technol. Conf., 2005, pp. 192–196.10.1109/VETECS.2005.1543276Suche in Google Scholar

[16] Zhang X., Matthaiou M., Björnson E., Coldrey M., and Debbah M., “On the MIMO capacity with residual transceiver hardware impairments,” in Proc. IEEE Int. Conf. Commun., 2014, pp. 5299–5305.10.1109/ICC.2014.6884163Suche in Google Scholar

[17] Mehrpouyan H., M. Khanzadi R., M. Matthaiou, A. Sayeed M., R. Schober, and Hua Y., “Improving bandwidth efficiency in E-band communication systems,” IEEE Commun. Mag., vol. 52, no. 3, pp.121–128, 2014.10.1109/MCOM.2014.6766096Suche in Google Scholar

[18] Puglielli A., Townley A., LaCaille G., Milovanovic V., Lu P., Trotskovsky K., Whitcombe A., Narevsky N., Wright G., Courtade T., Alon E., Nikolic B., and Niknejad A. M., “Design of energy- and cost-efficient massive MIMO arrays,” Proc. IEEE, vol. 104, no. 3, pp.586–606, 2016.10.1109/JPROC.2015.2492539Suche in Google Scholar

[19] Song X., Jans C., Landau L., Cvetkovski D., and Fettweis G., “A 60GHz LOS MIMO backhaul design combining spatial multiplexing and beamforming for a 100Gbps throughput,” in Proc. IEEE Glob. Commun. Conf., 2015, pp. 1–6.10.1109/GLOCOM.2015.7417737Suche in Google Scholar

[20] IEEE Std 802.11ad-2012, “Specific requirements-Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: Enhancements for very high throughput in the 60 GHz Band,” pp. 1–598, 2012.Suche in Google Scholar

[21] Commission Federal Communications, “Part 15 rules for unlicensed operation in the 57–64 GHz band,” 2013, Report and Order.Suche in Google Scholar

[22] Bøhagen F., Orten P., and G. E. Øien, “On Spherical vs. Plane wave modeling of line-of-sight MIMO channels,” IEEE Trans. Commun., vol. 57, no. 3, pp. 841–849, 2009.10.1109/GLOCOM.2006.793Suche in Google Scholar

[23] Bøhagen F., Orten P., and G. E. Øien, “Optimal design of uniform planar antenna arrays for strong line-of-sight MIMO channels,” in Proc. IEEE 7th Work. Signal Process. Adv. Wirel. Commun., 2006, pp. 1–5.10.1109/SPAWC.2006.346341Suche in Google Scholar

[24] Song X. and Fettweis G., “On spatial multiplexing of strong line-of-sight MIMO with 3D antenna arrangements,” IEEE Wirel. Commun. Lett., vol. 4, no. 4, pp.393–396, 2015.10.1109/LWC.2015.2424952Suche in Google Scholar

[25] Hälsig T., Cvetkovski D., Grass E., and Lankl B., “Measurement results for millimeter wave pure LOS MIMO channels,” in Proc. IEEE Wirel. Commun. Netw. Conf., 2017, pp. 1–6.10.1109/WCNC.2017.7925749Suche in Google Scholar

[26] Cvetkovski D., Grass E., Hälsig T., and Lankl B., “Hardware-in-the-loop demonstration of a 60GHz line-of-sight 2x2 MIMO link,” in Proc. IEEE EUROCON, 2017, pp. 631–636.10.1109/EUROCON.2017.8011188Suche in Google Scholar

[27] Salous S., Feeney S. M., Raimundo X., and Cheema A. A., “Wideband MIMO channel sounder for radio measurements in the 60 GHz band,” IEEE Trans. Wirel. Commun., vol. 15, no. 4, pp.2825–2832, 2016.10.1109/TWC.2015.2511006Suche in Google Scholar

[28] Chouayakh M., Knopp A., Ahokpossi C., and Lankl B., “Low effort MIMO detector for frequency selective indoor channels,” in Proc. 14th Eur. Wirel. Conf., 2008, pp. 1–5.10.1109/EW.2008.4623853Suche in Google Scholar

[29] Seki K., Kobori T., Okello J., and Ikekawa M., “A Cordic-Based Reconfigrable Systolic Array Processor for MIMO-OFDM Wireless Communications,” in Proc. IEEE Work. Signal Process. Syst., 2007, pp. 639–644.10.1109/SIPS.2007.4387624Suche in Google Scholar

[30] Cvetkovski D., Hälsig T., Lankl B., and Grass E., “Next Generation mm-Wave Wireless Backhaul Based on LOS MIMO Links,” in Proc. Ger. Microw. Conf., 2016, pp. 69–72.10.1109/GEMIC.2016.7461558Suche in Google Scholar

[31] Lopacinski L., Brzozowski M., and Kraemer R., “A 100Gbps Data Link Layer with a Frame Segmentation and Hybrid Automatic Repeat Request,” in Proc. Sci. Inf. Conf., 2015, pp. 1062–1069.10.1109/SAI.2015.7237274Suche in Google Scholar

[32] Kenington P. B. and Astier L., “Power Consumption of A/D Converters for Software Radio Applications,” IEEE Trans. Veh. Technol., vol. 49, no. 2, pp.643–650, 2000.10.1109/25.832996Suche in Google Scholar

[33] Hiraga K., Sakamoto K., Seki T., Nakagawa T., and Uehara K., “Effects of weight errors on capacity in simple decoding of short-range MIMO transmission,” IEICE Commun. Express, vol. 2, no. 5, pp.193–199, 2013.10.1587/comex.2.193Suche in Google Scholar

[34] Sheldon C., Seo M., Torkildson E., Rodwell M., and Madhow U., “Four-Channel Spatial Multiplexing Over a Millimeter-Wave Line-of-Sight Link,” in Proc. Int. Microw. Symp., 2009, pp. 389–392.10.1109/MWSYM.2009.5165715Suche in Google Scholar

[35] Song X., Rave W., and Fettweis G., “Analog and Successive Channel Equalization in Strong Line-of-Sight MIMO Communication,” in Proc. IEEE Int. Conf. Commun., 2016, pp. 1–7.10.1109/ICC.2016.7511058Suche in Google Scholar

[36] Song X., Hälsig T., Rave W., Lankl B., and Fettweis G., “Analog Equalization and Low Resolution Quantization in Strong Line-of-Sight MIMO Communication,” in Proc. IEEE Int. Conf. Commun., 2016, pp. 1–7.10.1109/ICC.2016.7511627Suche in Google Scholar

[37] Hälsig T. and Lankl B., “Channel Parameter Estimation for LOS MIMO Systems,” in Proc. 20th Int. ITG Work. Smart Antennas, 2016, pp. 98–102.Suche in Google Scholar

[38] Durisi G., Tarable A., Camarda C., Devassy R., and Montorsi G., “Capacity Bounds for MIMO Microwave Backhaul Links Affected by Phase Noise,” IEEE Trans. Commun., vol. 62, no. 3, pp. 920–929, 2014.10.1109/TCOMM.2014.012014.130745Suche in Google Scholar

[39] Haelsig T. and Lankl B., “Performance Evaluation of LOS MIMO Systems under the Influence of Phase Noise,” in Proc. 19th Int. ITG Work. Smart Antennas, 2015, pp. 1–5.Suche in Google Scholar

[40] Antes J., Boes F., Messinger T., Lewark U. J., Mahler T., Tessmann A., Henneberger R., Zwick T., and Kallfass I., “Multi-Gigabit Millimeter-Wave Wireless Communication in Realistic Transmission Environments,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 6, pp.1078–1087, 2015.10.1109/TTHZ.2015.2488486Suche in Google Scholar

Received: 2017-7-14
Published Online: 2017-8-25
Published in Print: 2017-9-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2017-0149/html
Button zum nach oben scrollen