Startseite Mathematik Spectral properties of certain Moran measures with consecutive and collinear digit sets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectral properties of certain Moran measures with consecutive and collinear digit sets

  • Hai-Hua Wu , Yu-Min Li EMAIL logo und Xin-Han Dong
Veröffentlicht/Copyright: 5. Februar 2020

Abstract

Let the 2×2 expanding matrix Rk be an integer Jordan matrix, i.e., Rk=diag(rk,sk) or Rk=J(pk), and let Dk={0,1,,qk-1}v with v=(1,1)T and 2qkpk,rk,sk for each natural number k. We show that the sequence of Hadamard triples {(Rk,Dk,Ck)} admits a spectrum of the associated Moran measure provided that lim infk2qkRk-1<1.

MSC 2010: 28A80; 42C05

Communicated by Siegfried Echterhoff


Award Identifier / Grant number: 11571099

Award Identifier / Grant number: 11701166

Award Identifier / Grant number: 11831007

Funding statement: The research is supported in part by the NNSF of China (No. 11701166, 11831007, 11571099).

Acknowledgements

The authors are grateful to the referees for going through the paper in great detail and for providing many valuable suggestions to improve the presentation.

References

[1] L.-X. An, X.-Y. Fu and C.-K. Lai, On spectral Cantor–Moran measures and a variant of Bourgain’s sum of sine problem, Adv. Math. 349 (2019), 84–124. 10.1016/j.aim.2019.04.014Suche in Google Scholar

[2] L.-X. An, L. He and X.-G. He, Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets, J. Funct. Anal. 277 (2019), no. 1, 255–278. 10.1016/j.jfa.2018.10.017Suche in Google Scholar

[3] L.-X. An and X.-G. He, A class of spectral Moran measures, J. Funct. Anal. 266 (2014), no. 1, 343–354. 10.1016/j.jfa.2013.08.031Suche in Google Scholar

[4] L.-X. An, X.-G. He and K.-S. Lau, Spectrality of a class of infinite convolutions, Adv. Math. 283 (2015), 362–376. 10.1016/j.aim.2015.07.021Suche in Google Scholar

[5] L.-X. An, X.-G. He and H.-X. Li, Spectrality of infinite Bernoulli convolutions, J. Funct. Anal. 269 (2015), no. 5, 1571–1590. 10.1016/j.jfa.2015.05.008Suche in Google Scholar

[6] X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 (2012), no. 3–4, 1681–1693. 10.1016/j.aim.2012.06.026Suche in Google Scholar

[7] X.-R. Dai, Spectra of Cantor measures, Math. Ann. 366 (2016), no. 3–4, 1621–1647. 10.1007/s00208-016-1374-5Suche in Google Scholar

[8] X.-R. Dai, X.-G. He and C.-K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math. 242 (2013), 187–208. 10.1016/j.aim.2013.04.016Suche in Google Scholar

[9] X.-R. Dai, X.-G. He and K.-S. Lau, On spectral N-Bernoulli measures, Adv. Math. 259 (2014), 511–531. 10.1016/j.aim.2014.03.026Suche in Google Scholar

[10] X.-R. Dai and Q.-Y. Sun, Spectral measures with arbitrary Hausdorff dimensions, J. Funct. Anal. 268 (2015), no. 8, 2464–2477. 10.1016/j.jfa.2015.01.005Suche in Google Scholar

[11] Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 (2015), no. 5, 1310–1326. 10.1016/j.jfa.2015.06.013Suche in Google Scholar

[12] D. Dutkay, J. Haussermann and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 (2019), no. 2, 1439–1481. 10.1090/tran/7325Suche in Google Scholar

[13] D. Dutkay and P. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. 256 (2007), no. 4, 801–823. 10.1007/s00209-007-0104-9Suche in Google Scholar

[14] D. Dutkay and C.-K. Lai, Uniformity of measures with Fourier frames, Adv. Math. 252 (2014), 684–707. 10.1016/j.aim.2013.11.012Suche in Google Scholar

[15] K. Falconer, Fractal Geometry, John Wiley, Chichester, 1990. Suche in Google Scholar

[16] X.-Y. Fu, X.-G. He and K.-S. Lau, Spectrality of self-similar tiles, Constr. Approx. 42 (2015), no. 3, 519–541. 10.1007/s00365-015-9306-2Suche in Google Scholar

[17] Y.-S. Fu, X.-G. He and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl. (9) 116 (2018), 105–131. 10.1016/j.matpur.2018.06.002Suche in Google Scholar

[18] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Analysis 16 (1974), 101–121. 10.1016/0022-1236(74)90072-XSuche in Google Scholar

[19] L. He and X.-G. He, On the Fourier orthonormal bases of Cantor–Moran measures, J. Funct. Anal. 272 (2017), no. 5, 1980–2004. 10.1016/j.jfa.2016.09.021Suche in Google Scholar

[20] X.-G. He, C.-K. Lai and K.-S. Lau, Exponential spectra in L2(μ), Appl. Comput. Harmon. Anal. 34 (2013), no. 3, 327–338. 10.1016/j.acha.2012.05.003Suche in Google Scholar

[21] T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 (2008), no. 2, 554–567. 10.1016/j.aim.2008.05.004Suche in Google Scholar

[22] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. 10.1512/iumj.1981.30.30055Suche in Google Scholar

[23] J. Jacod and P. Protter, Probability Essentials, 2nd ed., Universitext, Springer, Berlin, 2003. 10.1007/978-3-642-55682-1Suche in Google Scholar

[24] P. Jorgensen, S. Pedersen and F. Tian, Spectral theory of multiple intervals, Trans. Amer. Math. Soc. 367 (2015), no. 3, 1671–1735. 10.1090/S0002-9947-2014-06296-XSuche in Google Scholar

[25] P. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L2-spaces, J. Anal. Math. 75 (1998), 185–228. 10.1007/BF02788699Suche in Google Scholar

[26] M. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519–528. 10.1515/FORUM.2006.026Suche in Google Scholar

[27] I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409–420. 10.1006/jfan.2001.3941Suche in Google Scholar

[28] C.-K. Lai, K.-S. Lau and H. Rao, Spectral structure of digit sets of self-similar tiles on 1, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3831–3850. 10.1090/S0002-9947-2013-05787-XSuche in Google Scholar

[29] J.-L. Li, On the μM,D-orthogonal exponentials, Nonlinear Anal. 73 (2010), no. 4, 940–951. 10.1016/j.na.2010.04.017Suche in Google Scholar

[30] J.-L. Li, Spectra of a class of self-affine measures, J. Funct. Anal. 260 (2011), no. 4, 1086–1095. 10.1016/j.jfa.2010.12.001Suche in Google Scholar

[31] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Stud. Adv. Math. 44, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511623813Suche in Google Scholar

[32] R. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209–238. 10.1007/BF02788990Suche in Google Scholar

[33] R. Strichartz, Convergence of mock Fourier series, J. Anal. Math. 99 (2006), 333–353. 10.1007/BF02789451Suche in Google Scholar

[34] M.-W. Tang and F.-L. Yin, Spectrality of Moran measures with four-element digit sets, J. Math. Anal. Appl. 461 (2018), no. 1, 354–363. 10.1016/j.jmaa.2018.01.018Suche in Google Scholar

[35] T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2–3, 251–258. 10.4310/MRL.2004.v11.n2.a8Suche in Google Scholar

[36] Z.-Y. Wang, X.-H. Dong and Z.-S. Liu, Spectrality of certain Moran measures with three-element digit sets, J. Math. Anal. Appl. 459 (2018), no. 2, 743–752. 10.1016/j.jmaa.2017.11.006Suche in Google Scholar

Received: 2019-09-05
Revised: 2020-01-05
Published Online: 2020-02-05
Published in Print: 2020-05-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0248/pdf
Button zum nach oben scrollen