Home Varieties of nilpotent Lie superalgebras of dimension ≤ 5
Article
Licensed
Unlicensed Requires Authentication

Varieties of nilpotent Lie superalgebras of dimension ≤ 5

  • María Alejandra Alvarez ORCID logo EMAIL logo and Isabel Hernández ORCID logo
Published/Copyright: January 17, 2020

Abstract

In this paper, we study the varieties of nilpotent Lie superalgebras of dimension 5. We provide the algebraic classification of these superalgebras and obtain the irreducible components in every variety. As a byproduct, we construct rigid nilpotent Lie superalgebras of arbitrary dimension.

MSC 2010: 17B30; 17B56; 17B99

Communicated by Karl-Hermann Neeb


Award Identifier / Grant number: ANT 1755

Award Identifier / Grant number: FPI-18-02

Award Identifier / Grant number: YUC-2013-C14-221183

Award Identifier / Grant number: YUC-2013-C14-222870

Funding statement: M. A. Alvarez was supported by MINEDUC-UA project, code ANT 1755 and “Fondo Puente de Investigación de Excelencia” FPI-18-02 from University of Antofagasta. I. Hernández was supported by grants FOMIX-CONACYT YUC-2013-C14-221183 and 222870.

Acknowledgements

Both authors thank Prof. A. Fellouris for pointing us out a mistake in an earlier version of this article.

References

[1] M. A. Alvarez, The variety of 7-dimensional 2-step nilpotent Lie algebras, Symmetry 10 (2018), no. 1, Article ID 26. 10.3390/sym10010026Search in Google Scholar

[2] M. A. Alvarez and I. Hernández, On degenerations of Lie superalgebras, Linear Multilinear Algebra 68 (2020), no. 1, 29–44. 10.1080/03081087.2018.1498060Search in Google Scholar

[3] M. A. Alvarez, I. Hernández and I. Kaygorodov, Degenerations of Jordan superalgebras, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 6, 3289–3301. 10.1007/s40840-018-0664-3Search in Google Scholar

[4] J. M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. García Vergnolle and J. Sánchez Hernández, Contractions d’algèbres de Jordan en dimension 2, J. Algebra 319 (2008), no. 6, 2395–2409. 10.1016/j.jalgebra.2008.01.004Search in Google Scholar

[5] J. M. Ancochea Bermúdez, J. Fresán and J. Margalef Bentabol, Contractions of low-dimensional nilpotent Jordan algebras, Comm. Algebra 39 (2011), no. 3, 1139–1151. 10.1080/00927871003649393Search in Google Scholar

[6] A. Armour and Y. Zhang, Geometric classification of 4-dimensional superalgebras, Algebra, Geometry and Mathematical Physics, Springer Proc. Math. Stat. 85, Springer, Heidelberg (2014), 291–323. 10.1007/978-3-642-55361-5_18Search in Google Scholar

[7] A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. 10.1007/978-1-4612-0941-6Search in Google Scholar

[8] D. Burde, Degenerations of nilpotent Lie algebras, J. Lie Theory 9 (1999), no. 1, 193–202. Search in Google Scholar

[9] D. Burde, Degenerations of 7-dimensional nilpotent Lie algebras, Comm. Algebra 33 (2005), no. 4, 1259–1277. 10.1081/AGB-200053956Search in Google Scholar

[10] D. Burde and C. Steinhoff, Classification of orbit closures of 4-dimensional complex Lie algebras, J. Algebra 214 (1999), no. 2, 729–739. 10.1006/jabr.1998.7714Search in Google Scholar

[11] R. Carles and Y. Diakité, Sur les variétés d’ algèbres de Lie de dimension  7, J. Algebra 91 (1984), no. 1, 53–63. 10.1016/0021-8693(84)90125-XSearch in Google Scholar

[12] M. Couture, J. Patera, R. T. Sharp and P. Winternitz, Graded contractions of sl(3,𝐂), J. Math. Phys. 32 (1991), no. 9, 2310–2318. 10.1063/1.529154Search in Google Scholar

[13] B. D. Craven, Complex symmetric matrices, J. Aust. Math. Soc. 10 (1969), 341–354. 10.1017/S1446788700007588Search in Google Scholar

[14] I. Gorshkov, I. Kaygorodov and Y. Popov, Degenerations of Jordan algebras, preprint (2017), https://arxiv.org/abs/1707.08836; to appear in Algebra Colloq.. Search in Google Scholar

[15] A. Fialowski and M. Penkava, Moduli spaces of low dimensional Lie superalgebras, preprint (2017), https://arxiv.org/abs/1709.00764. 10.1142/S0129167X21500592Search in Google Scholar

[16] J. R. Gómez, Y. Khakimdjanov and R. M. Navarro, Some problems concerning to nilpotent Lie superalgebras, J. Geom. Phys. 51 (2004), no. 4, 473–486. 10.1016/j.geomphys.2004.01.003Search in Google Scholar

[17] F. Grunewald and J. O’Halloran, Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra 112 (1988), no. 2, 315–325. 10.1016/0021-8693(88)90093-2Search in Google Scholar

[18] A. Hegazi, Classification of nilpotent Lie superalgebras of dimension five. I, Internat. J. Theoret. Phys. 38 (1999), no. 6, 1735–1739. 10.1023/A:1026663115571Search in Google Scholar

[19] I. Hernández, G. Salgado and O. A. Sánchez-Valenzuela, Lie superalgebras based on a 3-dimensional real or complex Lie algebra, J. Lie Theory 16 (2006), no. 3, 539–560. Search in Google Scholar

[20] J. F. Herrera-Granada and P. Tirao, The Grunewald–O’Halloran conjecture for nilpotent Lie algebras of rank  1, Comm. Algebra 44 (2016), no. 5, 2180–2192. 10.1080/00927872.2015.1044097Search in Google Scholar

[21] J. Hrivnák, P. Novotný, J. Patera and J. Tolar, Graded contractions of the Pauli graded sl(3,), Linear Algebra Appl. 418 (2006), no. 2–3, 498–550. 10.1016/j.laa.2006.02.026Search in Google Scholar

[22] I. Kashuba and M. E. Martin, Deformations of Jordan algebras of dimension four, J. Algebra 399 (2014), 277–289. 10.1016/j.jalgebra.2013.09.040Search in Google Scholar

[23] I. Kashuba and J. Patera, Graded contractions of Jordan algebras and of their representations, J. Phys. A 36 (2003), no. 50, 12453–12473. 10.1088/0305-4470/36/50/006Search in Google Scholar

[24] A. A. Kirillov and Y. A. Neretin, The Variety An of n-dimensional Lie algebra structures, Amer. Math. Soc. Transl. 137 (1987), no. 2, 21–30. 10.1090/trans2/137/03Search in Google Scholar

[25] J. Lauret, Degenerations of Lie algebras and geometry of Lie groups, Differential Geom. Appl. 18 (2003), no. 2, 177–194. 10.1016/S0926-2245(02)00146-8Search in Google Scholar

[26] N.-L. Matiadou and A. Fellouris, A classification of the five-dimensional Lie superalgebras, over the complex numbers, Math. Balkanica (N. S.) 19 (2005), no. 1–2, 143–154. Search in Google Scholar

[27] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358, Springer, Berlin, 1988. 10.1007/978-3-662-21581-4Search in Google Scholar

[28] M. Nesterenko and R. Popovych, Contractions of low-dimensional Lie algebras, J. Math. Phys. 47 (2006), no. 12, Article ID 123515. 10.1063/1.2400834Search in Google Scholar

[29] M. Scheunert, The Theory of Lie Superalgebras. An Introduction, Lecture Notes in Math. 716, Springer, Berlin, 1979. 10.1007/BFb0070929Search in Google Scholar

[30] C. Seeley, Degenerations of 6-dimensional nilpotent Lie algebras over 𝐂, Comm. Algebra 18 (1990), no. 10, 3493–3505. 10.1080/00927879008824088Search in Google Scholar

[31] P. Tirao and S. Vera, There are no rigid filiform Lie algebras of low dimension, J. Lie Theory 29 (2019), no. 2, 391–412. Search in Google Scholar

[32] E. Weimar-Woods, The three-dimensional real Lie algebras and their contractions, J. Math. Phys. 32 (1991), no. 8, 2028–2033. 10.1063/1.529222Search in Google Scholar

[33] K. Zheng and Y. Zhang, On (α,β,γ)-derivations of Lie superalgebras, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 10, Article ID 1350050. 10.1142/S0219887813500503Search in Google Scholar

Received: 2019-09-04
Published Online: 2020-01-17
Published in Print: 2020-05-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0244/html
Scroll to top button