Startseite Mathematik Operational rules and generalized special polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Operational rules and generalized special polynomials

  • Mahvish Ali EMAIL logo
Veröffentlicht/Copyright: 6. Oktober 2019

Abstract

In this work, the generalized family of Hermite–Sheffer polynomials is introduced by using Euler’s integral and operational rules. Furthermore, some properties are established. In particular, generating function and determinant definition for the generalized Hermite–Sheffer polynomials are obtained. Some examples are also considered and their corresponding results are established.

MSC 2010: 26A33; 33B10; 33C45

Communicated by Shigeharu Takayama


Funding statement: This work has been sponsored by Dr. D. S. Kothari Post Doctoral Fellowship (Award letter No. F.4-2/2006(BSR)/MA/17-18/0025) by the University Grants Commission, Government of India, New Delhi.

Acknowledgements

The author is thankful to the Reviewer(s) for several useful comments and suggestions towards the improvement of this paper.

References

[1] M. Ali and S. Khan, Extended forms of certain hybrid special polynomials related to Appell sequences, Bull. Malays. Math. Sci. Soc. 42 (2019), no. 5, 2879–2896. 10.1007/s40840-018-0636-7Suche in Google Scholar

[2] P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynómes d’ Hermite, Gauthier-Villars, Paris, 1926. Suche in Google Scholar

[3] F. Costabile, F. Dell’Accio and M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl. (7) 26 (2006), no. 1, 1–12. Suche in Google Scholar

[4] F. A. Costabile and E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math. 234 (2010), no. 5, 1528–1542. 10.1016/j.cam.2010.02.033Suche in Google Scholar

[5] F. A. Costabile and E. Longo, The Appell interpolation problem, J. Comput. Appl. Math. 236 (2011), no. 6, 1024–1032. 10.1016/j.cam.2011.07.001Suche in Google Scholar

[6] F. A. Costabile and E. Longo, Umbral interpolation, Publ. Inst. Math. (Beograd) (N. S.) 99(113) (2016), 165–175. 10.2298/PIM1613165CSuche in Google Scholar

[7] G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math. 118 (2000), no. 1–2, 111–123. 10.1016/S0377-0427(00)00283-1Suche in Google Scholar

[8] G. Dattoli, Operational methods, fractional operators and special polynomials, Appl. Math. Comput. 141 (2003), no. 1, 151–159. 10.1016/S0096-3003(02)00329-6Suche in Google Scholar

[9] G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento Soc. Ital. Fis. B 119 (2004), no. 5, 479–488. Suche in Google Scholar

[10] G. Dattoli and S. Khan, Operational methods: an extension from ordinary monomials to multi-dimensional Hermite polynomials, J. Difference Equ. Appl. 13 (2007), no. 7, 671–677. 10.1080/10236190701317947Suche in Google Scholar

[11] G. Dattoli, S. Khan and P. E. Ricci, On Crofton–Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case, Integral Transforms Spec. Funct. 19 (2008), no. 1–2, 1–9. 10.1080/10652460701358984Suche in Google Scholar

[12] G. Dattoli, P. L. Ottaviani, A. Torre and L. Vázquez, Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, Riv. Nuovo Cimento Soc. Ital. Fis. (4) 20 (1997), no. 2, 133. 10.1007/BF02907529Suche in Google Scholar

[13] G. Dattoli, P. E. Ricci, C. Cesarano and L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Modelling 37 (2003), no. 7–8, 729–733. 10.1016/S0895-7177(03)00080-3Suche in Google Scholar

[14] S. Khan, M. Acikgoz, M. Ali, S. A. Wani and A. Khan, Approximation by operators including the hybrid special polynomials, Adv. Appl. Math. Sci. 17 (2018), no. 6, 479–502. Suche in Google Scholar

[15] S. Khan, M. W. Al-Saad and G. Yasmin, Some properties of Hermite-based Sheffer polynomials, Appl. Math. Comput. 217 (2010), no. 5, 2169–2183. 10.1016/j.amc.2010.07.016Suche in Google Scholar

[16] S. Khan, N. Raza and M. Ali, Finding mixed families of special polynomials associated with Appell sequences, J. Math. Anal. Appl. 447 (2017), no. 1, 398–418. 10.1016/j.jmaa.2016.10.009Suche in Google Scholar

[17] S. Khan, G. Yasmin and N. Ahmad, On a new family related to truncated exponential and Sheffer polynomials, J. Math. Anal. Appl. 418 (2014), no. 2, 921–937. 10.1016/j.jmaa.2014.04.028Suche in Google Scholar

[18] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. Suche in Google Scholar

[19] E. D. Rainville, Special Functions, first ed., Chelsea, New York, 1971. Suche in Google Scholar

[20] S. Roman, The Umbral Calculus, Pure Appl. Math. 111, Academic Press, New York, 1984. Suche in Google Scholar

[21] I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), 590–622. 10.1215/S0012-7094-39-00549-1Suche in Google Scholar

[22] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Mathe. Appl., Ellis Horwood, Chichester, 1984. Suche in Google Scholar

[23] W. Wang, A determinantal approach to Sheffer sequences, Linear Algebra Appl. 463 (2014), 228–254. 10.1016/j.laa.2014.09.009Suche in Google Scholar

[24] W. Wang and T. Wang, Generalized Riordan arrays, Discrete Math. 308 (2008), no. 24, 6466–6500. 10.1016/j.disc.2007.12.037Suche in Google Scholar

Received: 2019-02-23
Revised: 2019-09-12
Published Online: 2019-10-06
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0050/pdf
Button zum nach oben scrollen