Startseite Mathematik The Jensen–Pólya program for various L-functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Jensen–Pólya program for various L-functions

  • Ian Wagner EMAIL logo
Veröffentlicht/Copyright: 19. Dezember 2019

Abstract

Pólya proved in 1927 that the Riemann hypothesis is equivalent to the hyperbolicity of all of the Jensen polynomials of degree d and shift n for the Riemann Xi-function. Recently, Griffin, Ono, Rolen, and Zagier [M. Griffin, K. Ono, L. Rolen and D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA 116 2019, 23, 11103–11110] proved that for each degree d1 all of the Jensen polynomials for the Riemann Xi-function are hyperbolic except for possibly finitely many n. Here we extend their work by showing that the same statement is true for suitable L-functions. This offers evidence for the generalized Riemann hypothesis.

Keywords: L-functions
MSC 2010: 11M26

Communicated by Jan Bruinier


Acknowledgements

The author would like to thank Larry Rolen, Michael Griffin, and Ken Ono for helpful discussions related to this work and the referee for many suggestions which improved the clarity of this paper.

References

[1] G. W. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices, Cambridge Stud. Adv. Math. 118, Cambridge University, Cambridge, 2010. 10.1017/CBO9780511801334Suche in Google Scholar

[2] E. Bombieri, New progress on the zeta function: from old conjectures to a major breakthrough, Proc. Natl. Acad. Sci. USA 116 (2019), no. 23, 11085–11086. 10.1073/pnas.1906804116Suche in Google Scholar

[3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996), no. 4, 329–359. 10.1007/BF02124750Suche in Google Scholar

[4] G. Csordas, T. S. Norfolk and R. S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), no. 2, 521–541. 10.1090/S0002-9947-1986-0846596-4Suche in Google Scholar

[5] G. Csordas and R. S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. in Appl. Math. 11 (1990), no. 3, 328–357. 10.1016/0196-8858(90)90013-OSuche in Google Scholar

[6] D. K. Dimitrov and F. R. Lucas, Higher order Turán inequalities for the Riemann ξ-function, Proc. Amer. Math. Soc. 139 (2011), no. 3, 1013–1022. 10.1090/S0002-9939-2010-10515-4Suche in Google Scholar

[7] F. J. Dyson, Statistical theory of the energy levels of complex systems. III, J. Math. Phys. 3 (1962), 166–175. 10.1063/1.1703775Suche in Google Scholar

[8] M. Griffin, K. Ono, L. Rolen and D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA 116 (2019), no. 23, 11103–11110. 10.1073/pnas.1902572116Suche in Google Scholar PubMed PubMed Central

[9] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic Number Theory, Pure Math. 24, University of Missouri-St. Louis, St. Louis (1973), 181–193. 10.1090/pspum/024/9944Suche in Google Scholar

[10] J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1992. 10.1007/978-3-540-37663-7Suche in Google Scholar

[11] A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 70 million of its neighbors, AT & T Bell Lab 1989. Suche in Google Scholar

[12] G. Pólya, Über die algebraisch-funktionentheoretischen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7 (1927), 3–33. Suche in Google Scholar

Received: 2019-04-20
Revised: 2019-08-19
Published Online: 2019-12-19
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0104/html
Button zum nach oben scrollen