Startseite Comparison and continuity of Wick-type star products on certain coadjoint orbits
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison and continuity of Wick-type star products on certain coadjoint orbits

  • Chiara Esposito ORCID logo EMAIL logo , Philipp Schmitt und Stefan Waldmann
Veröffentlicht/Copyright: 13. Juni 2019

Abstract

In this paper, we discuss continuity properties of the Wick-type star product on the 2-sphere, interpreted as a coadjoint orbit. Star products on coadjoint orbits in general have been constructed by different techniques. We compare the constructions of Alekseev–Lachowska and Karabegov, and we prove that they agree in general. In the case of the 2-sphere, we establish the continuity of the star product, thereby allowing for a completion to a Fréchet algebra.

MSC 2010: 53D55; 17B08

Communicated by Karl-Hermann Neeb


Award Identifier / Grant number: DNRF92

Funding statement: The second author is supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

Acknowledgements

We would like thank Matthias Schötz for valuable discussions. Moreover, we would like to thank the referee for valuable remarks and suggestions.

References

[1] A. Alekseev and A. Lachowska, Invariant -products on coadjoint orbits and the Shapovalov pairing, Comment. Math. Helv. 80 (2005), no. 4, 795–810. 10.4171/CMH/35Suche in Google Scholar

[2] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz and D. Sternheimer, Deformation Theory and Quantization, Ann. Phys. 111 (1978), 61–151. 10.1016/0003-4916(78)90224-5Suche in Google Scholar

[3] S. Beiser, H. Römer and S. Waldmann, Convergence of the Wick star product, Comm. Math. Phys. 272 (2007), no. 1, 25–52. 10.1007/s00220-007-0190-xSuche in Google Scholar

[4] S. Beiser and S. Waldmann, Fréchet algebraic deformation quantization of the Poincaré disk, J. Reine Angew. Math. 688 (2014), 147–207. 10.1515/crelle-2012-0052Suche in Google Scholar

[5] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products. Geometry and physics, Classical Quantum Gravity 14 (1997), no. 1A, A93–A107. 10.1088/0264-9381/14/1A/008Suche in Google Scholar

[6] P. Bieliavsky, Quantum differential surfaces of higher genera, preprint (2017), https://arxiv.org/abs/1712.06367. Suche in Google Scholar

[7] P. Bieliavsky and V. Gayral, Deformation quantization for actions of Kählerian Lie groups, Mem. Amer. Math. Soc. 236 (2015), no. 1115, 1–154. 10.1090/memo/1115Suche in Google Scholar

[8] M. Bordemann, M. Brischle, C. Emmrich and S. Waldmann, Phase space reduction for star-products: An explicit construction for 𝐂Pn, Lett. Math. Phys. 36 (1996), no. 4, 357–371. 10.1007/BF00714403Suche in Google Scholar

[9] M. Bordemann, M. Brischle, C. Emmrich and S. Waldmann, Subalgebras with converging star products in deformation quantization: An algebraic construction for 𝐂Pn, J. Math. Phys. 37 (1996), no. 12, 6311–6323. 10.1063/1.531779Suche in Google Scholar

[10] M. Bordemann, M. Forger and H. Römer, Homogeneous Kähler manifolds: Paving the way towards new supersymmetric sigma models, Comm. Math. Phys. 102 (1986), no. 4, 605–617. 10.1007/BF01221650Suche in Google Scholar

[11] M. Bordemann and S. Waldmann, A Fedosov star product of the Wick type for Kähler manifolds, Lett. Math. Phys. 41 (1997), no. 3, 243–253. 10.1023/A:1007355511401Suche in Google Scholar

[12] M. Cahen, S. Gutt and J. Rawnsley, Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc. 337 (1993), no. 1, 73–98. 10.1090/S0002-9947-1993-1179394-9Suche in Google Scholar

[13] M. Cahen, S. Gutt and J. Rawnsley, Quantization of Kähler manifolds. III, Lett. Math. Phys. 30 (1994), no. 4, 291–305. 10.1007/BF00751065Suche in Google Scholar

[14] M. Cahen, S. Gutt and J. Rawnsley, Quantization of Kähler manifolds. IV, Lett. Math. Phys. 34 (1995), no. 2, 159–168. 10.1007/BF00739094Suche in Google Scholar

[15] D. Calaque and F. Näf, A trace formula for the quantization of coadjoint orbits, preprint (2014), https://arxiv.org/abs/1403.6864. 10.1093/imrn/rnv019Suche in Google Scholar

[16] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), no. 6, 487–496. 10.1007/BF00402248Suche in Google Scholar

[17] C. Esposito, P. Stapor and S. Waldmann, Convergence of the Gutt star product, J. Lie Theory 27 (2017), no. 2, 579–622. Suche in Google Scholar

[18] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), no. 2, 213–238. 10.4310/jdg/1214455536Suche in Google Scholar

[19] S. Gutt, An explicit -product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 (1983), no. 3, 249–258. 10.1007/BF00400441Suche in Google Scholar

[20] A. V. Karabegov, Deformation quantizations with separation of variables on a Kähler manifold, Comm. Math. Phys. 180 (1996), no. 3, 745–755. 10.1007/BF02099631Suche in Google Scholar

[21] A. V. Karabegov, Berezin’s quantization on flag manifolds and spherical modules, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1467–1479. 10.1090/S0002-9947-98-02099-6Suche in Google Scholar

[22] A. V. Karabegov, Pseudo-Kähler quantization on flag manifolds, Comm. Math. Phys. 200 (1999), no. 2, 355–379. 10.1007/s002200050533Suche in Google Scholar

[23] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), no. 4, 53–104. 10.1070/RM1962v017n04ABEH004118Suche in Google Scholar

[24] A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progr. Math. 140, Birkhäuser, Boston, 2002. Suche in Google Scholar

[25] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. 10.1023/B:MATH.0000027508.00421.bfSuche in Google Scholar

[26] D. Kraus, O. Roth, M. Schötz and S. Waldmann, A convergent star product on the Poincaré disc, preprint (2018), https://arxiv.org/abs/1803.02763; to appear in J. Funct. Anal. 10.1016/j.jfa.2019.02.011Suche in Google Scholar

[27] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd ed., Texts Appl. Math. 17, Springer, New York, 1999. 10.1007/978-0-387-21792-5Suche in Google Scholar

[28] C. Moreno and P. Ortega-Navarro, -products on D1(𝐂), S2 and related spectral analysis, Lett. Math. Phys. 7 (1983), no. 3, 181–193. 10.1007/BF00400432Suche in Google Scholar

[29] M. F. Müller-Bahns and N. Neumaier, Invariant star products of Wick type: Classification and quantum momentum mappings, Lett. Math. Phys. 70 (2004), no. 1, 1–15. 10.1007/s11005-004-0614-xSuche in Google Scholar

[30] T. Natsume and R. Nest, Topological approach to quantum surfaces, Comm. Math. Phys. 202 (1999), no. 1, 65–87. 10.1007/s002200050575Suche in Google Scholar

[31] T. Natsume, R. Nest and I. Peter, Strict quantizations of symplectic manifolds, Lett. Math. Phys. 66 (2003), no. 1–2, 73–89. 10.1023/B:MATH.0000017652.90999.d8Suche in Google Scholar

[32] R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), no. 2, 223–262. 10.1007/BF02099427Suche in Google Scholar

[33] N. Neumaier, Universality of Fedosov’s construction for star products of Wick type on pseudo-Kähler manifolds, Rep. Math. Phys. 52 (2003), no. 1, 43–80. 10.1016/S0034-4877(03)90004-8Suche in Google Scholar

[34] P. Ostapenko, Inverting the Shapovalov form, J. Algebra 147 (1992), no. 1, 90–95. 10.1016/0021-8693(92)90254-JSuche in Google Scholar

[35] J. Rawnsley, M. Cahen and S. Gutt, Quantization of Kähler manifolds. I. Geometric interpretation of Berezin’s quantization, J. Geom. Phys. 7 (1990), no. 1, 45–62. 10.1016/0393-0440(90)90019-YSuche in Google Scholar

[36] M. A. Rieffel, Deformation quantization for actions of 𝐑d, Mem. Amer. Math. Soc. 106 (1993), no. 506, 1–93. 10.1090/memo/0506Suche in Google Scholar

[37] M. A. Rieffel, Questions on quantization, Operator Algebras and Operator Theory (Shanghai 1997), Contemp. Math. 228, American Mathematical Society, Providence (1998), 315–326. 10.1090/conm/228/03294Suche in Google Scholar

[38] P. Schmitt, Convergent star products on coadjoint orbits, Master thesis, 2017. Suche in Google Scholar

[39] M. Schötz and S. Waldmann, Convergent star products for projective limits of Hilbert spaces, J. Funct. Anal. 274 (2018), no. 5, 1381–1423. 10.1016/j.jfa.2017.09.012Suche in Google Scholar

[40] S. Waldmann, A nuclear Weyl algebra, J. Geom. Phys. 81 (2014), 10–46. 10.1016/j.geomphys.2014.03.003Suche in Google Scholar

Received: 2018-12-17
Published Online: 2019-06-13
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0302/html
Button zum nach oben scrollen