Home Maximal subalgebras of finite-dimensional algebras
Article
Licensed
Unlicensed Requires Authentication

Maximal subalgebras of finite-dimensional algebras

  • Miodrag Cristian Iovanov and Alexander Harris Sistko EMAIL logo
Published/Copyright: June 14, 2019

Abstract

We study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field 𝕂 and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case and then lifting to non-semisimple algebras. The results are sharpest in the case of algebraically closed fields and take special forms for algebras presented by quivers with relations. We also relate representation theoretic properties of the algebra and its maximal and other subalgebras and provide a series of embeddings between quivers, incidence algebras and other structures which relate indecomposable representations of algebras and some subalgebras via induction/restriction functors. Some results in literature are also re-derived as a particular case, and other applications are given.


Communicated by Freydoon Shahidi


Acknowledgements

The authors would like to thank Ryan Kinser for a careful reading of a preliminary version of this paper and many useful suggestions which improved the paper; they would also like to thank Victor Camillo for encouraging discussions and suggesting a few additional references.

References

[1] A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. 29 (2017), no. 1, 1–5. 10.1515/forum-2015-0241Search in Google Scholar

[2] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), no. 8, 3464–3479. 10.1016/j.jalgebra.2007.12.010Search in Google Scholar

[3] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162. 10.1112/blms/bdm107Search in Google Scholar

[4] I. Assem, F. U. Coelho and S. Trepode, The bound quiver of a split extension, J. Algebra Appl. 7 (2008), no. 4, 405–423. 10.1142/S0219498808002928Search in Google Scholar

[5] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), no. 5, 1547–1555. 10.1080/00927879808826219Search in Google Scholar

[6] I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-by-nilpotent extensions, Colloq. Math. 81 (1999), no. 1, 21–31. 10.4064/cm-81-1-21-31Search in Google Scholar

[7] I. Assem and D. Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003), no. 2, 259–275. 10.4064/cm98-2-10Search in Google Scholar

[8] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Universitys, Cambridge, 1995. 10.1017/CBO9780511623608Search in Google Scholar

[9] V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3–8. 10.1007/BF01236059Search in Google Scholar

[10] R. Basili, On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149 (2000), no. 2, 107–120. 10.1016/S0022-4049(99)00027-4Search in Google Scholar

[11] R. Basili, On the number of irreducible components of commuting varieties, J. Pure Appl. Algebra 149 (2000), no. 2, 121–126. 10.1016/S0022-4049(99)00036-5Search in Google Scholar

[12] R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (2003), no. 1, 58–80. 10.1016/S0021-8693(03)00388-0Search in Google Scholar

[13] A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. 10.1090/S0002-9947-06-03879-7Search in Google Scholar

[14] S. Caenepeel, G. Militaru and S. Zhu, Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Math. 1787, Springer., Berlin, 2002. 10.1007/b83849Search in Google Scholar

[15] S. Caenepeel and B. Zhu, Separable bimodules and approximation, Algebr. Represent. Theory 8 (2005), no. 2, 207–223. 10.1007/s10468-005-0971-xSearch in Google Scholar

[16] S. Dăscălescu, C. Năstăsescu and C. Raianu, Hopf Algebras. An Introduction, Monogr. Textb. Pure Appl. Math. 235, Marcel Dekker, New York, 2001. Search in Google Scholar

[17] E. B. Dynkin, Maximal subgroups of the classical groups (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 39–166; translation in Amer. Math. Soc. Transl. 6 (1957), 245–378. 10.1090/trans2/006/03Search in Google Scholar

[18] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras (in Russian), Mat. Sbornik N.S. 30(72) (1952), 349–462; translation in Amer. Math. Soc. Transl. 6 (1957), 111-244. 10.1090/trans2/006/02Search in Google Scholar

[19] A. Elduque, On maximal subalgebras of central simple Mal’cev algebras, J. Algebra 103 (1986), no. 1, 216–227. 10.1016/0021-8693(86)90181-XSearch in Google Scholar

[20] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of associative superalgebras, J. Algebra 275 (2004), no. 1, 40–58. 10.1016/j.jalgebra.2003.12.018Search in Google Scholar

[21] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of Jordan superalgebras, J. Pure Appl. Algebra 212 (2008), no. 11, 2461–2478. 10.1016/j.jpaa.2008.03.012Search in Google Scholar

[22] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, American Mathematical Society, Providence, 2015. 10.1090/surv/205Search in Google Scholar

[23] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. 10.24033/bsmf.1583Search in Google Scholar

[24] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. I, Amer. J. Math. 80 (1958), 614–622. 10.2307/2372773Search in Google Scholar

[25] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2) 73 (1961), 324–348. 10.2307/1970336Search in Google Scholar

[26] R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979/80), no. 2, 97–99. 10.1080/03081087908817305Search in Google Scholar

[27] R. M. Guralnick, A note on commuting pairs of matrices, Linear Multilinear Algebra 31 (1992), no. 1–4, 71–75. 10.1080/03081089208818123Search in Google Scholar

[28] R. M. Guralnick and M. D. Miller, Maximal subfields of algebraically closed fields, J. Aust. Math. Soc. Ser. A 29 (1980), no. 4, 462–468. 10.1017/S1446788700021625Search in Google Scholar

[29] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Math. Appl. (Springer) 586, Springer, Dordrecht, 2007. 10.1007/978-1-4020-5141-8Search in Google Scholar

[30] N. Jacobson, Schur’s theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431–436. 10.1090/S0002-9904-1944-08169-XSearch in Google Scholar

[31] L. Kadison, New Examples of Frobenius Extensions, Univ. Lecture Ser. 14, American Mathematical Society, Providence, 1999. 10.1090/ulect/014Search in Google Scholar

[32] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199–212. 10.1016/0024-3795(85)90247-2Search in Google Scholar

[33] A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 1951 (1951), no. 40, Paper No. 15. Search in Google Scholar

[34] C. Martinez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 (2001), no. 2, 575–629. 10.1006/jabr.2000.8456Search in Google Scholar

[35] S. Maubach and I. Stampfli, On maximal subalgebras, J. Algebra 483 (2017), 1–36. 10.1016/j.jalgebra.2017.03.021Search in Google Scholar

[36] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998), no. 3, 260–262. 10.1080/00029890.1998.12004879Search in Google Scholar

[37] T. S. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73 (1952), 108–114. 10.1090/S0002-9947-1952-0049855-8Search in Google Scholar

[38] T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math. Soc. 80 (1955), 387–401. 10.2307/1992996Search in Google Scholar

[39] C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors applied to graded rings, J. Algebra 123 (1989), no. 2, 397–413. 10.1016/0021-8693(89)90053-7Search in Google Scholar

[40] R. S. Pierce, Associative Algebras, Grad. Texts in Math. 88, Springer, New York, 1982. 10.1007/978-1-4757-0163-0Search in Google Scholar

[41] M. I. Platzeck, Trivial extensions, iterated tilted algebras and cluster-tilted algebras, São Paulo J. Math. Sci. 4 (2010), no. 3, 499–527. 10.11606/issn.2316-9028.v4i3p499-527Search in Google Scholar

[42] A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653–683. 10.1007/s00222-003-0315-6Search in Google Scholar

[43] M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. 10.1016/0021-8693(74)90198-7Search in Google Scholar

[44] M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. 10.1016/0021-8693(77)90391-XSearch in Google Scholar

[45] M. L. Racine, Maximal subalgebras of central separable algebras, Proc. Amer. Math. Soc. 68 (1978), no. 1, 11–15. 10.1090/S0002-9939-1978-0453796-5Search in Google Scholar

[46] M. D. Rafael, Separable functors revisited, Comm. Algebra 18 (1990), no. 5, 1445–1459. 10.1080/00927879008823975Search in Google Scholar

[47] J. Schröer, Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv. 79 (2004), no. 2, 396–426. 10.1007/s00014-003-0788-3Search in Google Scholar

[48] J. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905), 66–76. 10.1007/978-3-642-61947-2_5Search in Google Scholar

[49] K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, Doctoral Dissertations Paper 851, 2015, http://digitalcommons.uconn.edu/dissertations/851. Search in Google Scholar

[50] D. Simson, A. Skowroński and I. Assem, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge, 2006. 10.1017/CBO9780511614309Search in Google Scholar

Received: 2019-02-05
Published Online: 2019-06-14
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0033/html
Scroll to top button