Abstract
We study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field
Acknowledgements
The authors would like to thank Ryan Kinser for a careful reading of a preliminary version of this paper and many useful suggestions which improved the paper; they would also like to thank Victor Camillo for encouraging discussions and suggesting a few additional references.
References
[1] A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. 29 (2017), no. 1, 1–5. 10.1515/forum-2015-0241Search in Google Scholar
[2] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), no. 8, 3464–3479. 10.1016/j.jalgebra.2007.12.010Search in Google Scholar
[3] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162. 10.1112/blms/bdm107Search in Google Scholar
[4] I. Assem, F. U. Coelho and S. Trepode, The bound quiver of a split extension, J. Algebra Appl. 7 (2008), no. 4, 405–423. 10.1142/S0219498808002928Search in Google Scholar
[5] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), no. 5, 1547–1555. 10.1080/00927879808826219Search in Google Scholar
[6] I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-by-nilpotent extensions, Colloq. Math. 81 (1999), no. 1, 21–31. 10.4064/cm-81-1-21-31Search in Google Scholar
[7] I. Assem and D. Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003), no. 2, 259–275. 10.4064/cm98-2-10Search in Google Scholar
[8] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Universitys, Cambridge, 1995. 10.1017/CBO9780511623608Search in Google Scholar
[9] V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3–8. 10.1007/BF01236059Search in Google Scholar
[10] R. Basili, On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149 (2000), no. 2, 107–120. 10.1016/S0022-4049(99)00027-4Search in Google Scholar
[11] R. Basili, On the number of irreducible components of commuting varieties, J. Pure Appl. Algebra 149 (2000), no. 2, 121–126. 10.1016/S0022-4049(99)00036-5Search in Google Scholar
[12] R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (2003), no. 1, 58–80. 10.1016/S0021-8693(03)00388-0Search in Google Scholar
[13] A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. 10.1090/S0002-9947-06-03879-7Search in Google Scholar
[14] S. Caenepeel, G. Militaru and S. Zhu, Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Math. 1787, Springer., Berlin, 2002. 10.1007/b83849Search in Google Scholar
[15] S. Caenepeel and B. Zhu, Separable bimodules and approximation, Algebr. Represent. Theory 8 (2005), no. 2, 207–223. 10.1007/s10468-005-0971-xSearch in Google Scholar
[16] S. Dăscălescu, C. Năstăsescu and C. Raianu, Hopf Algebras. An Introduction, Monogr. Textb. Pure Appl. Math. 235, Marcel Dekker, New York, 2001. Search in Google Scholar
[17] E. B. Dynkin, Maximal subgroups of the classical groups (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 39–166; translation in Amer. Math. Soc. Transl. 6 (1957), 245–378. 10.1090/trans2/006/03Search in Google Scholar
[18] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras (in Russian), Mat. Sbornik N.S. 30(72) (1952), 349–462; translation in Amer. Math. Soc. Transl. 6 (1957), 111-244. 10.1090/trans2/006/02Search in Google Scholar
[19] A. Elduque, On maximal subalgebras of central simple Mal’cev algebras, J. Algebra 103 (1986), no. 1, 216–227. 10.1016/0021-8693(86)90181-XSearch in Google Scholar
[20] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of associative superalgebras, J. Algebra 275 (2004), no. 1, 40–58. 10.1016/j.jalgebra.2003.12.018Search in Google Scholar
[21] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of Jordan superalgebras, J. Pure Appl. Algebra 212 (2008), no. 11, 2461–2478. 10.1016/j.jpaa.2008.03.012Search in Google Scholar
[22] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, American Mathematical Society, Providence, 2015. 10.1090/surv/205Search in Google Scholar
[23] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. 10.24033/bsmf.1583Search in Google Scholar
[24] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. I, Amer. J. Math. 80 (1958), 614–622. 10.2307/2372773Search in Google Scholar
[25] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2) 73 (1961), 324–348. 10.2307/1970336Search in Google Scholar
[26] R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979/80), no. 2, 97–99. 10.1080/03081087908817305Search in Google Scholar
[27] R. M. Guralnick, A note on commuting pairs of matrices, Linear Multilinear Algebra 31 (1992), no. 1–4, 71–75. 10.1080/03081089208818123Search in Google Scholar
[28] R. M. Guralnick and M. D. Miller, Maximal subfields of algebraically closed fields, J. Aust. Math. Soc. Ser. A 29 (1980), no. 4, 462–468. 10.1017/S1446788700021625Search in Google Scholar
[29] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Math. Appl. (Springer) 586, Springer, Dordrecht, 2007. 10.1007/978-1-4020-5141-8Search in Google Scholar
[30] N. Jacobson, Schur’s theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431–436. 10.1090/S0002-9904-1944-08169-XSearch in Google Scholar
[31] L. Kadison, New Examples of Frobenius Extensions, Univ. Lecture Ser. 14, American Mathematical Society, Providence, 1999. 10.1090/ulect/014Search in Google Scholar
[32] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199–212. 10.1016/0024-3795(85)90247-2Search in Google Scholar
[33] A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 1951 (1951), no. 40, Paper No. 15. Search in Google Scholar
[34] C. Martinez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 (2001), no. 2, 575–629. 10.1006/jabr.2000.8456Search in Google Scholar
[35] S. Maubach and I. Stampfli, On maximal subalgebras, J. Algebra 483 (2017), 1–36. 10.1016/j.jalgebra.2017.03.021Search in Google Scholar
[36] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998), no. 3, 260–262. 10.1080/00029890.1998.12004879Search in Google Scholar
[37]
T. S. Motzkin and O. Taussky,
Pairs of matrices with property
[38] T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math. Soc. 80 (1955), 387–401. 10.2307/1992996Search in Google Scholar
[39] C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors applied to graded rings, J. Algebra 123 (1989), no. 2, 397–413. 10.1016/0021-8693(89)90053-7Search in Google Scholar
[40] R. S. Pierce, Associative Algebras, Grad. Texts in Math. 88, Springer, New York, 1982. 10.1007/978-1-4757-0163-0Search in Google Scholar
[41] M. I. Platzeck, Trivial extensions, iterated tilted algebras and cluster-tilted algebras, São Paulo J. Math. Sci. 4 (2010), no. 3, 499–527. 10.11606/issn.2316-9028.v4i3p499-527Search in Google Scholar
[42] A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653–683. 10.1007/s00222-003-0315-6Search in Google Scholar
[43] M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. 10.1016/0021-8693(74)90198-7Search in Google Scholar
[44] M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. 10.1016/0021-8693(77)90391-XSearch in Google Scholar
[45] M. L. Racine, Maximal subalgebras of central separable algebras, Proc. Amer. Math. Soc. 68 (1978), no. 1, 11–15. 10.1090/S0002-9939-1978-0453796-5Search in Google Scholar
[46] M. D. Rafael, Separable functors revisited, Comm. Algebra 18 (1990), no. 5, 1445–1459. 10.1080/00927879008823975Search in Google Scholar
[47] J. Schröer, Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv. 79 (2004), no. 2, 396–426. 10.1007/s00014-003-0788-3Search in Google Scholar
[48] J. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905), 66–76. 10.1007/978-3-642-61947-2_5Search in Google Scholar
[49] K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, Doctoral Dissertations Paper 851, 2015, http://digitalcommons.uconn.edu/dissertations/851. Search in Google Scholar
[50] D. Simson, A. Skowroński and I. Assem, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge, 2006. 10.1017/CBO9780511614309Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Selberg integral over local fields
- On conjugation orbits of semisimple pairs in rank one
- On a topology property for the moduli space of Kapustin–Witten equations
- Differentiability of the evolution map and Mackey continuity
- A prime geodesic theorem for SL3(ℤ)
- Comparison and continuity of Wick-type star products on certain coadjoint orbits
- A construction of residues of Eisenstein series and related square-integrable classes in the cohomology of arithmetic groups of low k-rank
- Linear invariance of intersections on unitary Rapoport–Zink spaces
- Maximal subalgebras of finite-dimensional algebras
- A universal enveloping algebra for cocommutative rack bialgebras
- A rank rigidity result for CAT(0) spaces with one-dimensional Tits boundaries
- Projective objects in the category of pointwise finite dimensional representations of an interval finite quiver
Articles in the same Issue
- Frontmatter
- Selberg integral over local fields
- On conjugation orbits of semisimple pairs in rank one
- On a topology property for the moduli space of Kapustin–Witten equations
- Differentiability of the evolution map and Mackey continuity
- A prime geodesic theorem for SL3(ℤ)
- Comparison and continuity of Wick-type star products on certain coadjoint orbits
- A construction of residues of Eisenstein series and related square-integrable classes in the cohomology of arithmetic groups of low k-rank
- Linear invariance of intersections on unitary Rapoport–Zink spaces
- Maximal subalgebras of finite-dimensional algebras
- A universal enveloping algebra for cocommutative rack bialgebras
- A rank rigidity result for CAT(0) spaces with one-dimensional Tits boundaries
- Projective objects in the category of pointwise finite dimensional representations of an interval finite quiver