Startseite New results in stability analysis for LTI SISO systems modeled by GL-discretized fractional-order transfer functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New results in stability analysis for LTI SISO systems modeled by GL-discretized fractional-order transfer functions

  • Rafał Stanisławski EMAIL logo
Veröffentlicht/Copyright: 18. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper tackles important problems in stable discretization of commensurate fractional-order continuous-time LTI SISO systems based on the Grünwald-Letnikov (GL) difference. New, analytical stability/instability conditions are given for the GL-discretized systems governed by fractional-order transfer functions. A stability preservation analysis is also performed for a class of finite GL approximators.

Acknowledgements

The author is indebted to Prof. Krzysztof J. Latawiec for his stimulating discussions and to the anonymous reviewers for their instructive comments.

References

[1] R. Abu-Saris, Q. Al-Madallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, No 1 (2013), 613–629; DOI: 10.2478/s13540-013-0039-2; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xmlDOI: 10.2478/s13540-013-0039-2Suche in Google Scholar

[2] M.A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electrical Engineering 90, No 6 (2008), 455–467; DOI: 10.1007/s00202-007-0092-0DOI: 10.1007/s00202-007-0092-0Suche in Google Scholar

[3] M. Busłowicz, Stability of linear continuous-time fractional order systems with delays of the retarded type. Bulletin of the Polish Academy of Sciences, Techn. Sciences 56, No 4 (2008), 319–324Suche in Google Scholar

[4] M. Busłowicz, Robust stability of positive discrete-time linear systems of fractional order. Bulletin of the Polish Academy of Sciences, Techn. Sciences 58, No 4 (2010), 567–572; DOI: 10.2478/v10175-010-0057-8DOI: 10.2478/v10175-010-0057-8Suche in Google Scholar

[5] M. Busłowicz, T. Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems. Int. J. Appl. Math. Comput. Sci. 19, No 2 (2009), 263–269; DOI: 10.2478/v10006-009-0022-6DOI: 10.2478/v10006-009-0022-6Suche in Google Scholar

[6] J. Černák, I. Györi, L. Nechvátal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18, No 3 (2015), 651–672; DOI: 10.1515/fca-2015-0040; https://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xmlDOI: 10.1515/fca-2015-0040Suche in Google Scholar

[7] J. Černák, T. Kisela, Asymptotic stability of dynamic equations with two fractional terms: Continuous versus discrete case. Fract. Calc. Appl. Anal. 18, No 2 (2015), 437–458; DOI: 10.1515/fca-2015-0028; https://www.degruyter.com/view/j/fca.2015.18.issue-2/ issue-files/fca.2015.18.issue-2.xmlDOI: 10.1515/fca-2015-0028Suche in Google Scholar

[8] A. Dzieliński, D. Sierociuk, Stability of discrete fractional order statespace systems. J. Vib. Control 14, No 9-10 (2008), 1543–1556; DOI: 10.1177/1077546307087431DOI: 10.1177/1077546307087431Suche in Google Scholar

[9] Z. Gao, A graphic stability criterion for non-commensurate fractional-order time-delay systems. Nonlinear Dyn. 78, No 3 (2012), 2101–2111; DOI: 10.1007/s11071-014-1580-1DOI: 10.1007/s11071-014-1580-1Suche in Google Scholar

[10] S. Guermah, S. Djennoune, M. Bettayeb, A new approach for stability analysis of linear discrete-time fractional-order systems. In: New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dordrecht, Netherlands (2010), 151–16210.1007/978-90-481-3293-5_11Suche in Google Scholar

[11] T. Kaczorek, New stability tests of positive standard and fractional linear systems. Circuits and Systems 2, No 4 (2011), 261–268; DOI: 10.4236/cs.2011.24036DOI: 10.4236/cs.2011.24036Suche in Google Scholar

[12] T. Kaczorek, Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin, Germany (2011)10.1007/978-3-642-20502-6Suche in Google Scholar

[13] T. Kaczorek, P. Ostalczyk, Responses comparison of the two discrete-time linear fractional state-space models. Fract. Calc. Appl. Anal. 19, No 4 (2016), 789–805; DOI: 10.1515/fca-2016-0043; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xmlDOI: 10.1515/fca-2016-0043Suche in Google Scholar

[14] R. Lopez, Advanced Engineering Mathematics, 2nd Ed. Addison Wesley Publishing Company, Boston, MA (2001)Suche in Google Scholar

[15] J.G. Lu, Y.Q. Chen, Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties. Fract. Calc. Appl. Anal. 16, No 1 (2013), 142–157; DOI: 10.2478/s13540-013-0010-2; https://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xmlDOI: 10.2478/s13540-013-0010-2Suche in Google Scholar

[16] R. Malti, X. Moreau, F. Khemane, A. Oustaloup, Stability and resonance conditions of elementary fractional transfer functions. Automatica 47, No 11 (2011), 2462–2467; DOI: 10.1016/j.automatica.2011.08.029DOI: 10.1016/j.automatica.2011.08.029Suche in Google Scholar

[17] D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Applications Multiconference, Vol. 2, Lille, France (1996), 963–968Suche in Google Scholar

[18] D. Matignon, Stability properties for generalized fractional differential systems. ES AIM Proceedings 5 (1998), 145–158; DOI: 10.1051/proc:1998004DOI: 10.1051/proc:1998004Suche in Google Scholar

[19] C. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control, Springer, London, UK (2010)10.1007/978-1-84996-335-0Suche in Google Scholar

[20] D. Mozyrska, M. Wyrwas, The z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 2015 (2015), Article ID: 852734; DOI: 10.1155/2015/852734DOI: 10.1155/2015/852734Suche in Google Scholar

[21] P. Ostalczyk, Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains. Int. J. Appl. Math. Comput. Sci. 22, No 3 (2012), 533–538; DOI: 10.2478/v10006-012-0040-7DOI: 10.2478/v10006-012-0040-7Suche in Google Scholar

[22] P. Ostalczyk, Discrete Fractional Calculus. Applications in Control and Image Processing. Ser. in Computer Vision 4, World Scientific, Singapore (2016)10.1142/9833Suche in Google Scholar

[23] I. Petráš, Stability of fractional-order systems with rational orders: A survey. Fract. Calc. Appl. Anal. 12, No 3 (2009), 269–298; at http://www.math.bas.bg/~fcaaSuche in Google Scholar

[24] I. Petráš, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Nonlinear Physical Science, Springer, New York (2010)10.1007/978-3-642-18101-6Suche in Google Scholar

[25] M. Siami, M.S. Tavazoei, M. Haeri, Stability preservation analysis in direct discretization of fractional order transfer functions. Signal Processing 91, No 3 (2011), 508–512; DOI: 10.1016/j.sigpro.2010.06.009DOI: 10.1016/j.sigpro.2010.06.009Suche in Google Scholar

[26] R. Stanisławski, K.J. Latawiec, Normalized finite fractional differences - the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22, No 4 (2012), 907–919; DOI: 10.2478/v10006-012-0067-9DOI: 10.2478/v10006-012-0067-9Suche in Google Scholar

[27] R. Stanisławski, K.J. Latawiec, Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability. Bull. of the Polish Academy of Sciences, Techn. Sciences 61, No 2 (2013), 353–361; DOI: 10.2478/bpasts-2013-0034DOI: 10.2478/bpasts-2013-0034Suche in Google Scholar

[28] R. Stanisławski, K.J. Latawiec, Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems. Bull. of the Polish Academy of Sciences, Techn. Sciences 61, No 2 (2013), 362–370; DOI: 10.2478/bpasts-2013-0035DOI: 10.2478/bpasts-2013-0035Suche in Google Scholar

[29] R. Stanisławski, K.J. Latawiec, M. Lukaniszyn, A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015 (2015), Article ID: 512104; DOI: 10.1155/2015/512104DOI: 10.1155/2015/512104Suche in Google Scholar

[30] S.B. Stojanovic, D.L. Debeljkovic, Simple stability conditions of linear discrete time systems with multiple delay. Serbian J. of Electrical Engineering 7, No 1 (2010), 69–79; DOI: 10.2298/SJEE1001069SDOI: 10.2298/SJEE1001069SSuche in Google Scholar

[31] R. Wu, M. Feckan, Stability analysis of impulsive fractional-order systems by vector comparison principle. Nonlinear Dyn. 82, No 4 (2015), 2007-2019; DOI: 10.1007/s11071-015-2295-7DOI: 10.1007/s11071-015-2295-7Suche in Google Scholar

Received: 2016-5-3
Revised: 2016-12-3
Published Online: 2017-2-18
Published in Print: 2017-2-1

© 2017 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 20–1–2017)
  4. Survey paper
  5. Ten equivalent definitions of the fractional laplace operator
  6. Research paper
  7. Consensus of fractional-order multi-agent systems with input time delay
  8. Research paper
  9. Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-Type Hadamard derivatives
  10. Research paper
  11. A preconditioned fast finite difference method for space-time fractional partial differential equations
  12. Research paper
  13. On existence and uniqueness of solutions for semilinear fractional wave equations
  14. Research paper
  15. Computational solutions of the tempered fractional wave-diffusion equation
  16. Research paper
  17. Completeness on the stability criterion of fractional order LTI systems
  18. Research paper
  19. Wavelet convolution product involving fractional fourier transform
  20. Research paper
  21. Solutions of the main boundary value problems for the time-fractional telegraph equation by the green function method
  22. Research paper
  23. A foundational approach to the Lie theory for fractional order partial differential equations
  24. Research paper
  25. Null-controllability of a fractional order diffusion equation
  26. Research paper
  27. New results in stability analysis for LTI SISO systems modeled by GL-discretized fractional-order transfer functions
  28. Research paper
  29. The stretched exponential behavior and its underlying dynamics. The phenomenological approach
  30. Short Paper
  31. Lyapunov-type inequality for an anti-periodic fractional boundary value problem
Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2017-0013/html
Button zum nach oben scrollen