Startseite Fractional Diffusion on Bounded Domains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fractional Diffusion on Bounded Domains

  • Ozlem Defterli EMAIL logo , Marta D’Elia , Qiang Du , Max Gunzburger , Rich Lehoucq und Mark M. Meerschaert
Veröffentlicht/Copyright: 13. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. This paper discusses the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

References

[1] F. Andreu, J.M. Mazon, J.D. Rossi, and J. Toledo, Nonlocal Diffusion Problems. Math. Surveys Monogr. 165, American Mathematical Society, Providence - RI (2010).Suche in Google Scholar

[2] B. Baeumer and M.M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (2010), 243-2448.Suche in Google Scholar

[3] B. Baeumer, M. Kováks, M.M. Meerschaert, P. Straka, and R. Schilling, Reflected spectrally negative stable processes and their governing equations. Trans. Amer. Math. Soc., to appear. Preprint at: http://www.stt.msu.edu/users/mcubed/ReflectedStable.pdf.Suche in Google Scholar

[4] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36, No 6 (2000), 1403-1412.Suche in Google Scholar

[5] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, The fractionalorder governing equation of Lévy motion. Water Resour. Res. 36, No 6 (2000), 1413-1424.Suche in Google Scholar

[6] D.A. Benson, R. Schumer, M.M. Meerschaert and S.W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42, No 1/2 (2001), 211-240.10.1023/A:1006733002131Suche in Google Scholar

[7] N. Burch, M. D’Elia, and R. Lehoucq, The exit-time problem for a Markov jump process. Eur. Phys. J. Special Topics 223 (2014), 3257-3271.Suche in Google Scholar

[8] M. Chen and W. Deng, Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, No 3 (2014), 1418-1438.Suche in Google Scholar

[9] M. D’Elia and M. Gunzburger, Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control Optim. 52, No 1 (2014), 243-273.Suche in Google Scholar

[10] M. D’Elia, M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. J. Comput. Math. Appl. 66 (2013), 1254-1260.Suche in Google Scholar

[11] M. D’Elia, Q. Du, M. Gunzburger, and R. Lehoucq, Finite range jump processes and volume-constrained diffusion problems, Technical Report SAND 2014-2584J, Sandia National Laboratories, Albuquerque (2014).Suche in Google Scholar

[12] Z. Deng, V.P. Singh and L. Bengtsson, Numerical solution of fractional advection-dispersion equation. J. Hydraulic Eng. 130 (2004), 422-431.Suche in Google Scholar

[13] K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29, No 1-4 (2002), 3-22.10.1023/A:1016592219341Suche in Google Scholar

[14] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review 54 (2012), 667-696.Suche in Google Scholar

[15] Q. Du, L. Ju, L. Tian, and K. Zhou, A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. of Computation 82 (2012), 1889-1922.Suche in Google Scholar

[16] Q. Du, L. Tian, and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion & peridynamic models. SIAM J. Numer. Anal. 51 (2013), 1211-1234.Suche in Google Scholar

[17] Q. Du, M. Gunzburger, R.B. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Mathematical Models and Methods in Applied Sciences (M3AS) 23 (2013), 493-540.10.1142/S0218202512500546Suche in Google Scholar

[18] Q. Du, Z. Huang, and R. Lehoucq, Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete Cont. Dynam. Sys. Ser. B 19, No 4 (2014), 961-977.Suche in Google Scholar

[19] G.J. Fix and J.P. Roop, Least squares finite element solution of a fractional order two-point boundary value problem. Computers Math. Applic. 48 (2004), 1017-1033. Suche in Google Scholar

[20] E. Isaacson and H.B. Keller, Analysis of Numerical Methods. Wiley, New York (1966).Suche in Google Scholar

[21] K. Itˆo and H.P. McKean, Brownian motions on a half line. Illinois J. Math. 7 (1963), 181-231.Suche in Google Scholar

[22] B. Hunt, Asymptotic solutions for one-dimensional dispersion in rivers. J. Hydraulic Eng. 132, No 1 (2006), 87-93.Suche in Google Scholar

[23] S. Kim and M.L. Kavvas, Generalized Fick’s law and fractional ADE for pollutant transport in a river: detailed derivation. J. Hydro. Eng. 11, No 1 (2006), 80-83.Suche in Google Scholar

[24] F. Liu, V. Ahn and I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004), 209-219.Suche in Google Scholar

[25] Ch. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17, No 3 (1986), 704-719.Suche in Google Scholar

[26] V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira- Mejias, H.R. Hicks, Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192 (2003), 406-421. Suche in Google Scholar

[27] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010).10.1142/p614Suche in Google Scholar

[28] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004), 65-77.Suche in Google Scholar

[29] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56 (2006), 80-90.Suche in Google Scholar

[30] M.M. Meerschaert, H.P. Scheffler and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211 (2006), 249-261.Suche in Google Scholar

[31] M.M. Meerschaert, J. Mortensen, and S.W. Wheatcraft, Fractional vector calculus for fractional advection-dispersion. Physica A: Statistical Mechanics and Its Applications 367 (2006), 181-190.Suche in Google Scholar

[32] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008), L17403.10.1029/2008GL034899Suche in Google Scholar

[33] M.M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics 43, De Gruyter, Berlin (2012), ISBN 978-3-11-025869-1.Suche in Google Scholar

[34] M.M. Meerschaert and Farzad Sabzikar, Stochastic integration for tempered fractional Brownian motion. Stoch. Proc. Appl. 124, No 7 (2014), 2363-2387.Suche in Google Scholar

[35] R. Mengesha and Q. Du, Analysis of the peridynamic model with a sign changing kernel. Discr. Cont. Dynam. Syst. B 18 (2013), 1415-1437 10.3934/dcdsb.2013.18.1415Suche in Google Scholar

[36] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, No 5 (2012), 521-573.Suche in Google Scholar

[37] Z. Odibat and S. Momani, Numerical methods for nonlinear partial differential equations of fractional order. Applied Mathematical Modelling 32, No 1 (2008), 28-39.Suche in Google Scholar

[38] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Euations. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo (1983).10.1007/978-1-4612-5561-1Suche in Google Scholar

[39] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego, California (1999).Suche in Google Scholar

[40] F. Sabzikar, M.M. Meerschaert, and J. Chen, Tempered fractional calculus. J. Comput. Phys., To appear. Preprint at http://www.stt.msu.edu/users/mcubed/TFC.pdf.Suche in Google Scholar

[41] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993).Suche in Google Scholar

[42] P. Seleson, M. Gunzburger, and M. Parks, Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput. Meth. Appl. Mech. Enrgr. 266 (2013), 185-204.Suche in Google Scholar

[43] C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler, A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213 (2006), 205-213.Suche in Google Scholar

[44] V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Annals of Physics 323, No 11 (2008), 2756-2778.Suche in Google Scholar

[45] S.B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42 (2005), 1862-1874.Suche in Google Scholar

[46] H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobileimmobile advection-dispersion model. Comput. Math. Appl. 66, No 5 (2013), 693-701.Suche in Google Scholar

[47] Y. Zhang, M.M. Meerschaert, and A.I. Packman, Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 39 (2012), L20404. 10.1029/2012GL053476Suche in Google Scholar

Received: 2014-8-22
Published Online: 2015-3-13
Published in Print: 2015-4-1

© 2015 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2015-0023/html
Button zum nach oben scrollen