Startseite A Numerical Approach for Fractional Order Riccati Differential Equation Using B-Spline Operational Matrix
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Numerical Approach for Fractional Order Riccati Differential Equation Using B-Spline Operational Matrix

  • Hossein Jafari EMAIL logo , Haleh Tajadodi und Dumitru Baleanu
Veröffentlicht/Copyright: 13. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we develop an effective numerical method to achieve the numerical solutions of nonlinear fractional Riccati differential equations. We found the operational matrix within the linear B-spline functions. By this technique, the given problem converts to a system of algebraic equations. This technique is used to solve fractional Riccati differential equation. The obtained results are illustrated both applicability and validity of the suggested approach.

References

[1] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods. Ser. on Complexity, Nonlinearity and Chaos, World Scientific, 2012.10.1142/8180Suche in Google Scholar

[2] C. de Boor, A Practical Guide to Splines. Springer-Verlag, New York, 1978.10.1007/978-1-4612-6333-3Suche in Google Scholar

[3] E. Cohen, R.F. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction. A.K. Peters, 2001.10.1201/9781439864203Suche in Google Scholar

[4] E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Mod. 36 (2012), 4931-4943.Suche in Google Scholar

[5] R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto, Fractional calculus and continuous-time finance. III: The diffusion limit. In: Mathematical Finance (Eds. M. Kohlmann, S. Tang), Birkh¨auser, Basel-Boston- Berlin, 2001, 171-180.Suche in Google Scholar

[6] J.C. Goswami, A.K. Chan, Fundamentals of Wavelets: Theory, Algorithms, and Applications. John Wiley & Sons, 1999.Suche in Google Scholar

[7] H. Jafari, A. Kadem, D. Baleanu, T. Yilmaz, Solutions Of the fractional Davey-Stewartson equations with variational iteration method. Rom. Rep. Phys. 64, No 2 (2012), 337-346.Suche in Google Scholar

[8] H. Jafari, H. Tajadodi, D. Baleanu, A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Frac. Calc. Appl. Anal. 16, No 1 (2013), 109-122; DOI: 10.2478/s13540-013-0008-9; http://link.springer.com/article/10.2478/s13540-013-0008-9.Suche in Google Scholar

[9] H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62 (2011), 1038-1045.Suche in Google Scholar

[10] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland, New York, 2006.Suche in Google Scholar

[11] V.S. Kiryakova, Generalized Fractional Calculus and Applications. Longman-Wiley-CRC Press, Harlow-N. York, 1993.Suche in Google Scholar

[12] M. Lakestani, M. Dehghan, S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. 17 (2012), 1149-1162.Suche in Google Scholar

[13] P. Lancaster, L. Rodman, Algebraic Riccati Equations. Oxford University Press, Oxford, 1995. Suche in Google Scholar

[14] X. Li, Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci., 17 (2012), 3934-3946.Suche in Google Scholar

[15] A. Lotfi, M. Dehghan, S.A. Yousefi, A numerical technique for solving fractional optimal control problems. Comput. Math. Appl. 62 (2011), 1055-1067.Suche in Google Scholar

[16] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 182, No 2 (2006), 1083-1092.Suche in Google Scholar

[17] I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.Suche in Google Scholar

[18] W.T. Reid, Riccati Differential Equations. New York and London, Academic Press, 1972.Suche in Google Scholar

[19] D. Rostamy, M. Alipour, H. Jafari, D. Baleanu, Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis. Rom. Rep. Phys. 65, No 2 (2013), 334-349.Suche in Google Scholar

[20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon, 1993.Suche in Google Scholar

[21] S.A. Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and their applications. Int. J. Syst. Sci. 41 (2010), 709-716. Suche in Google Scholar

Received: 2014-9-5
Published Online: 2015-3-13
Published in Print: 2015-4-1

© 2015 Diogenes Co., Sofia

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2015-0025/html
Button zum nach oben scrollen