Startseite Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes

  • Ivan V. Chizhov EMAIL logo und Mikhail A. Borodin
Veröffentlicht/Copyright: 12. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For Reed–Muller codes we consider subcodes of codimension 1. A classification of Hadamard products of such subcodes is obtained. With the use of this classification it has been shown that in most cases the problem of recovery of the secret key of a code-based cryptosystem employing such subcodes is equivalent to the problem of recovery of the secret key of the same cryptosystem based on Reed–Muller codes, which is known to be tractable.


Note

Originally published in Diskretnaya Matematika (2020) 32,№1, 115–134 (in Russian).


References

[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, Jet Prop. Lab., California Inst. Technol., Pasadena, CA, DSN Prog. Rep., 4244 (1978), 114–116.Suche in Google Scholar

[2] Sidelnikov V. M., “A public-key cryptosystem based on binary Reed–Muller codes”, DiscreteMath. Appl., 4:3 (1994), 191–207.10.1515/dma.1994.4.3.191Suche in Google Scholar

[3] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, Lect. Notes Comput. Sci., 4515 (2007), 347–360.10.1007/978-3-540-72540-4_20Suche in Google Scholar

[4] Borodin M. A., Chizhov I. V., “Effective attack on the McEliece cryptosystem based on Reed–Muller codes”, Discrete Math. Appl., 24:5 (2014), 273–280.10.1515/dma-2014-0024Suche in Google Scholar

[5] Berger T. P., Loidreau P., “How to mask the structure of codes for a cryptographic use”, Designs, Codes and Cryptography, 35:1 (2005), 63-79.10.1007/s10623-003-6151-2Suche in Google Scholar

[6] Sidelnikov V. M., Shestakov S. O., “On insecurity of cryptosystems based on generalized Reed–Solomon codes”, Discrete Math. Appl., 2:4 (1992), 439–444.10.1515/dma.1992.2.4.439Suche in Google Scholar

[7] Wieschebrink C., “An attack on a modified Niederreiter encryption scheme”, Lect. Notes Comput. Sci., 3958 (2006), 14-26.10.1007/11745853_2Suche in Google Scholar

[8] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCRYPTO-2009, Lect. Notes Comput. Sci., 6061 (2010), 61–72.10.1007/978-3-642-12929-2_5Suche in Google Scholar

[9] Couvreur A., Marquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory Appl., 2015, 133-140.10.1007/978-3-319-17296-5_13Suche in Google Scholar

[10] Couvreur A., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes”, Designs, Codes and Cryptography, 73 2 (2014), 641–666.10.1007/s10623-014-9967-zSuche in Google Scholar

[11] Otmani A.,Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, Codes, Cryptology, and Information Security, 2015, 173–183.10.1007/978-3-319-18681-8_14Suche in Google Scholar

[12] Couvreur A., Otmani A., Tillich J.-P., Gauthier–Umana V., “A polynomial-time attack on the BBCRS scheme”, IACR Int.Workshop on Public Key Cryptogr., 2015, 175–193.10.1007/978-3-662-46447-2_8Suche in Google Scholar

[13] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63, 1 (2017), 404–427.10.1007/978-3-642-55220-5_2Suche in Google Scholar

[14] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977.Suche in Google Scholar

Received: 2019-07-02
Revised: 2019-12-04
Published Online: 2022-10-12
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0025/html
Button zum nach oben scrollen