Abstract
For Reed–Muller codes we consider subcodes of codimension 1. A classification of Hadamard products of such subcodes is obtained. With the use of this classification it has been shown that in most cases the problem of recovery of the secret key of a code-based cryptosystem employing such subcodes is equivalent to the problem of recovery of the secret key of the same cryptosystem based on Reed–Muller codes, which is known to be tractable.
Note
Originally published in Diskretnaya Matematika (2020) 32,№1, 115–134 (in Russian).
References
[1] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, Jet Prop. Lab., California Inst. Technol., Pasadena, CA, DSN Prog. Rep., 4244 (1978), 114–116.Suche in Google Scholar
[2] Sidelnikov V. M., “A public-key cryptosystem based on binary Reed–Muller codes”, DiscreteMath. Appl., 4:3 (1994), 191–207.10.1515/dma.1994.4.3.191Suche in Google Scholar
[3] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, Lect. Notes Comput. Sci., 4515 (2007), 347–360.10.1007/978-3-540-72540-4_20Suche in Google Scholar
[4] Borodin M. A., Chizhov I. V., “Effective attack on the McEliece cryptosystem based on Reed–Muller codes”, Discrete Math. Appl., 24:5 (2014), 273–280.10.1515/dma-2014-0024Suche in Google Scholar
[5] Berger T. P., Loidreau P., “How to mask the structure of codes for a cryptographic use”, Designs, Codes and Cryptography, 35:1 (2005), 63-79.10.1007/s10623-003-6151-2Suche in Google Scholar
[6] Sidelnikov V. M., Shestakov S. O., “On insecurity of cryptosystems based on generalized Reed–Solomon codes”, Discrete Math. Appl., 2:4 (1992), 439–444.10.1515/dma.1992.2.4.439Suche in Google Scholar
[7] Wieschebrink C., “An attack on a modified Niederreiter encryption scheme”, Lect. Notes Comput. Sci., 3958 (2006), 14-26.10.1007/11745853_2Suche in Google Scholar
[8] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCRYPTO-2009, Lect. Notes Comput. Sci., 6061 (2010), 61–72.10.1007/978-3-642-12929-2_5Suche in Google Scholar
[9] Couvreur A., Marquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory Appl., 2015, 133-140.10.1007/978-3-319-17296-5_13Suche in Google Scholar
[10] Couvreur A., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes”, Designs, Codes and Cryptography, 73 2 (2014), 641–666.10.1007/s10623-014-9967-zSuche in Google Scholar
[11] Otmani A.,Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, Codes, Cryptology, and Information Security, 2015, 173–183.10.1007/978-3-319-18681-8_14Suche in Google Scholar
[12] Couvreur A., Otmani A., Tillich J.-P., Gauthier–Umana V., “A polynomial-time attack on the BBCRS scheme”, IACR Int.Workshop on Public Key Cryptogr., 2015, 175–193.10.1007/978-3-662-46447-2_8Suche in Google Scholar
[13] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63, 1 (2017), 404–427.10.1007/978-3-642-55220-5_2Suche in Google Scholar
[14] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Contents
- Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes
- Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
- On the “tree” structure of natural numbers
- Estimates of lengths of shortest nonzero vectors in some lattices, II
- Curvature of the Boolean majority function
- Properties of proper families of Boolean functions
Artikel in diesem Heft
- Contents
- Classification of Hadamard products of one-codimensional subcodes of Reed–Muller codes
- Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
- On the “tree” structure of natural numbers
- Estimates of lengths of shortest nonzero vectors in some lattices, II
- Curvature of the Boolean majority function
- Properties of proper families of Boolean functions