Home Curvature of the Boolean majority function
Article
Licensed
Unlicensed Requires Authentication

Curvature of the Boolean majority function

  • Aleksandr S. Tissin EMAIL logo
Published/Copyright: October 12, 2022

Abstract

The Boolean majority function and the generalized Boolean majority function of an even number n of variables are considered. For these functions exact values of the Walsh coefficients and the curvature are calculated.


Note

Originally published in Diskretnaya Matematika (2021) 33,№2, 155–165 (in Russian).


References

[1] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yashchenko V. V., Boolean functions in coding theory and cryptology, M.: MCCME, 2012 (in Russian), 584 pp.Search in Google Scholar

[2] Logachev O. A., Fedorov S. N., Yashchenko V. V., “On the Δ-equivalence of Boolean functions”, Discrete Math. Appl., 30:2 (2020), 93–101.10.1515/dma-2020-0009Search in Google Scholar

[3] Logachev O. A., Fedorov S. N., Yashchenko V. V., “Boolean functions as points on the hypersphere in the Euclidean space”, Discrete Math. Appl., 29:2 (2019), 89–101.10.1515/dma-2019-0009Search in Google Scholar

[4] KamlovskiiO.V., “The sum ofmodules of Walsh coefficients for some balanced Boolean functions”, MatematicheskieVoprosy Kriptografii, 19:2 (2017), 129–145 (in Russian).Search in Google Scholar

[5] de la Cruz Jimenez R. A., Kamlovskiy O. V., “The sum of modules of Walsh coefficients of Boolean functions”, Discrete Math. Appl., 26:5 (2016), 259–272.10.1515/dma-2016-0023Search in Google Scholar

[6] Dalai D.K., Maitra S., Sarkar S., “Basic theory in construction of Boolean functions with maximum possible annihilator immunity”, Designs, Codes and Cryptography, 40:1 (2006), 75–98.10.1007/s10623-005-6300-xSearch in Google Scholar

[7] Kuznetsov D. S., Special functions, M.: Vysshaya shkola, 1962 (in Russian), 249 pp.Search in Google Scholar

[8] Ivchenko G. I.,Medvedev Yu. I., Mironova V. A., “Krawtchouk polynomials and their applications in cryptography and coding theory”, Matematicheskie Voprosy Kriptografii, 6:1 (2015), 33–56 (in Russian).10.4213/mvk150Search in Google Scholar

[9] MacWilliams E. J., Sloane N. J. A., The Theory of Error-Correcting Codes. Parts I, II., North-Holland, Amsterdam, 1977.Search in Google Scholar

[10] Titswort R.C., Correlation properties of cyclic sequences, Calif. Inst. Technol., 1962, 244 pp.Search in Google Scholar

[11] Sveshnikov A. G., Tikhonov A. N., The theory of functions of a complex variable, M.: FIZMATLIT, 2004 (in Russian), 336 pp.Search in Google Scholar

[12] The Mathematics Magazine, 34:3 (1961), 178.Search in Google Scholar

Received: 2021-02-18
Published Online: 2022-10-12
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0029/html
Scroll to top button