Startseite Limit theorems for the number of successes in random binary sequences with random embeddings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Limit theorems for the number of successes in random binary sequences with random embeddings

  • Boris I. Selivanov EMAIL logo und Vladimir P. Chistyakov
Veröffentlicht/Copyright: 16. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The sequence of n random (0, 1)-variables X1, …, Xn is considered, with θn of these variables distributed equiprobable and the others take the value 1 with probability p (0 < p < 1, p ≠ 1/2) θn is a random variable taking values 0, 1, …, n). On the assumption that n → ∞ and under certain conditions imposed on p, θn and Xk, k = 1,...,n, several limit theorems for the sum Sn=k=1nXk. The results are of interest in connection with steganography and statistical analysis of sequences produced by random number generators.

Funding

This work was supported by the RAS program «Modern problems in theoretic mathematics».

Note: Originally published in Diskretnaya Matematika (2016) 28, №2, 92–107 (in Russian).

References

[1] Katzenbeiser S., Petitcolas F. (eds.), Information Hiding Techniques for Steganography and Digital Watermarking, Artech House, Boston-London, 2000, XVIII + 220 pp.Suche in Google Scholar

[2] Gribunin V. G., Okov I. N., Turintsev I. V., Digital steganography, Solon-Press, Moscow, 2002 (in Russian), 272 pp.Suche in Google Scholar

[3] Agranovskiy A. V., Balakin A. V., Gribunin V. G., Sapozhnikov S. A., Steganography, digital watermarks and steganalysis, Vuzovskaya kniga, Moscow, 2009 (in Russian), 220 pp.Suche in Google Scholar

[4] Knuth D., The art of computer programming. Volume 2. Seminumerical algorithms, Addison-Wesley, 1969, 688 pp.Suche in Google Scholar

[5] Ivanov M. A., Chugunkov I. V., The theory, application and evaluation of the quality of pseudo-random sequence generators, Kudits-Obraz, Moscow, 2003 (in Russian), 240 pp.Suche in Google Scholar

[6] Ivanov V. A., “The models of inclusions in homogeneous random sequences”, Trudy po diskretnoi matematike, 11, Fizmatlit, Moscow, 2008, 18-34 (in Russian).Suche in Google Scholar

[7] Ponomarev K. I., “On one statistical model of steganography”, Discrete Math. Appl., 19:3 (2009), 329-336.10.1515/DMA.2009.021Suche in Google Scholar

[8] Ponomarev K. I., “A parametric model of embedding and its statistical analysis”, Discrete Math. Appl., 19:6 (2009), 587-596.10.1515/DMA.2009.039Suche in Google Scholar

[9] Kharin Yu. S., Vecherko E. V., “Statistical estimation of parameters for binary Markov chain models with embeddings”, Discrete Math. Appl., 23:2 (2013), 153-169.10.1515/dma-2013-009Suche in Google Scholar

[10] Robbins H., “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54:12 (1948), 1151-1161.10.1090/S0002-9904-1948-09142-XSuche in Google Scholar

[11] Sirazhdinov S. Kh., Orazov G., “Generalization of a theorem of G. Robbins”, Limit theorems and statistical conclusions, FAN, Tashkent, 1968, 154-162 (in Russian).Suche in Google Scholar

[12] Shiryaev A. N., Probability-1, 3 edition, Springer-Verlag New York, 2016,486 pp.10.1007/978-0-387-72206-1Suche in Google Scholar

Received: 2016-4-7
Published Online: 2016-12-16
Published in Print: 2016-12-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0030/pdf
Button zum nach oben scrollen