Abstract
Let A be a Bezout ring without non-central idempotents. If A is a right or left Rickartian ring, then A is an Hermitian ring. If A is an exchange ring, then every rectangular matrix over A is diagonalizable.
Funding
This work was supported by the Russian Science Foundation (project no. 16-11-10013).
Note: Originally published in Diskretnaya Matematika (2016) 28, №2, 133–145 (in Russian).
Acknowledgment
The author thanks B.V. Zabavsky and I.B. Kozhukhov for useful discussions.
References
[1] Amitsur S.A., “Remarks on principal ideal rings”, Osaka Math. J., 15:1 (1963), 59–69.Suche in Google Scholar
[2] Burgess W.D., Stephenson W., ”An analogue of the Pierce sheaf for non-commutative rings”, Comm. Algebra., 6:9 (1978), 863–886.10.1080/00927877808822272Suche in Google Scholar
[3] Burgess W.D., Stephenson W., ”Rings all of whose Pierce stalks are local”, Canad. Math. Bull., 22:2 (1979), 159–164.10.4153/CMB-1979-022-8Suche in Google Scholar
[4] Gillman L., Henriksen M., ”Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Amer. Math. Soc., 82:2 (1956), 366–391.10.1090/S0002-9947-1956-0078980-4Suche in Google Scholar
[5] Gillman L., Henriksen M., ”Some remarks about elementary divisor rings”, Trans. Amer. Math. Soc., 82:2 (1956), 362–365.10.1090/S0002-9947-1956-0078979-8Suche in Google Scholar
[6] Henriksen M., ”Some remarks about elementary divisor rings, II”, Michigan Math. J., 1956, N으 3, 159–163.10.1307/mmj/1028990029Suche in Google Scholar
[7] Jondrup S., ”p.p. rings and finitely generated flat ideals”, Trans. Amer. Math. Soc., 28:2 (1971), 431–435.10.2307/2037986Suche in Google Scholar
[8] Kaplansky I., ”Elementary divisors and modules”, Trans. Amer. Math. Soc., 66:2 (1949), 464–491.10.1090/S0002-9947-1949-0031470-3Suche in Google Scholar
[9] Lam T.Y., Lectures on Modules and Rings, New York, Springer, 1999.10.1007/978-1-4612-0525-8Suche in Google Scholar
[10] Larsen M.D., Lewis W.J., Shores T.S., ”Elementary divisor rings and finitely presented modules”, Trans. Amer. Math. Soc., 187:1 (1974), 231–248.10.1090/S0002-9947-1974-0335499-1Suche in Google Scholar
[11] Levy L.S., ”Sometimes only square matrices can be diagonalized”, Proc. Amer. Math. Soc., 52 (1975), 18–22.10.1090/S0002-9939-1975-0376775-2Suche in Google Scholar
[12] Nicholson W.K., ”Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229:2 (1977), 269–278.10.1090/S0002-9947-1977-0439876-2Suche in Google Scholar
[13] Stephenson W., ”Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28 (1974), 291–310.10.1112/plms/s3-28.2.291Suche in Google Scholar
[14] Tuganbaev A.A., ”Flat modules and rings finitely generated as modules over their centers”, Mathematical Notes, 60:2 (1996), 186–203.10.1007/BF02305182Suche in Google Scholar
[15] Tuganbaev A.A., Semidistributive Modules and Rings, Dordrecht-Boston-London, Kluwer Academic Publishers, 1998.10.1007/978-94-011-5086-6Suche in Google Scholar
[16] Tuganbaev A.A., Rings Close to Regular, Dordrecht-Boston-London, Kluwer Academic Publishers, 2002.10.1007/978-94-015-9878-1Suche in Google Scholar
[17] Warfield R.B., ”Stable generation of modules”, Lect. Notes Math., 700 (1979), 16–33.10.1007/BFb0063457Suche in Google Scholar
© 2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
- Independent sets in graphs
- Successive partition of edges of bipartite graph into matchings
- Limit theorems for the number of successes in random binary sequences with random embeddings
- Bezout rings without non-central idempotents
Artikel in diesem Heft
- Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
- Independent sets in graphs
- Successive partition of edges of bipartite graph into matchings
- Limit theorems for the number of successes in random binary sequences with random embeddings
- Bezout rings without non-central idempotents