Startseite Conjugacy word problem in the tree product of free groups with a cyclic amalgamation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conjugacy word problem in the tree product of free groups with a cyclic amalgamation

  • Vladimir N. Bezverkhniy EMAIL logo und Elena S. Logacheva
Veröffentlicht/Copyright: 16. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The conjugacy word problem in the tree product of free groups with a cyclic amalgamation is solved in the positive. This result generalizes the known result obtained by S. Lipschutz for the free product of two free groups with cyclic amalgamation. Solution of the main problem involves proving the solvability of the problem of intersection of a finitely generated subgroup of a given class of groups with a cyclic subgroup belonging to the factor of the main group; the solvability of the problem of intersection of a coset of a finitely generated subgroup with a cyclic subgroup belonging to a free factor.

Funding

This work was financially supported by the Russian Foundation for Basic Research, (grant №15-41-03222 r_centre_a).

Note: Originally published in Diskretnaya Matematika(2016) 28, №1,3-18 (in Russian)

References

[1] Bezverkhniy V.N., “Solution of the occurrence problem for a class of groups”, Voprosy teorii grupp i polugrupp. TSPI named after L.N. Tolstoy, 1972, 3-86 (in Russian).Suche in Google Scholar

[2] Bezverkhniy V.N., “Solution of the conjugacy problem of subgroups in a class of HNN-groups”, Algoritmicheskie problemy teorii grupp i polugrupp i ikh prilozheniya. Mezhvuzovskiy sbornik nauchnykh trudov. TSPI named after L.N. Tolstoy, 1983, 5080 (in Russian).Suche in Google Scholar

[3] Bezverkhniy V.N., “Solution of the conjugacy problem of subgroups for a class of groups. I-II”, Sovremennaya algebra. Mezhvuzovskiy sbornik. LGPI, 6 (1977), 16-32 (in Russian).Suche in Google Scholar

[4] Bezverkhniy V.N., “On the intersection of finitely generated subgroups of a free group”, Sbornik nauchnykh trudov kafedry vysshey matematiki. Tul’skiypolitekhnicheskiy institut, 2 (1974), 51-56 (in Russian).Suche in Google Scholar

[5] Bezverkhniy V.N., “Solution of the conjugacy word problem in some classes of groups”, Algoritmicheskie problemy teorii grupp i polugrupp. Mezhvuzovskiy sbornik nauchnykh trudov. TSPI named after L.N. Tolstoy, 1990,103-152 (in Russian).Suche in Google Scholar

[6] Lyndon R.C., Schupp P.E., Combinatorial group theory, Springer, 1977.Suche in Google Scholar

[7] Magnus W., Karrass A., Solitar D., Combinatorial group theory, Interscience Publishers, New York, 1966.Suche in Google Scholar

[8] Lipschutz S., “The generalization of Dehn’s result on the conjugacy problem”, Proc. Amer. Math. Soc., 150 (1966), 759-762.Suche in Google Scholar

[9] Karras A., Solitar D., “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150 (1970), 227-255.10.1090/S0002-9947-1970-0260879-9Suche in Google Scholar

Received: 2014-9-12
Published Online: 2016-12-16
Published in Print: 2016-12-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2016-0027/html
Button zum nach oben scrollen