Startseite Counting integral points of bounded height on varieties with large fundamental group
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Counting integral points of bounded height on varieties with large fundamental group

  • Yohan Brunebarbe und Marco Maculan EMAIL logo
Veröffentlicht/Copyright: 21. November 2023

Abstract

The main result of this paper states the subpolynomial growth of the number of integral points with bounded height of a variety over a number field whose fundamental group is large. This generalizes a recent paper of Ellenberg, Lawrence and Venkatesh and replies to two questions asked therein.

Award Identifier / Grant number: ANR-18-CE40-0017

Funding statement: Marco Maculan was supported by the Agence Nationale de la Recherche, ANR-18-CE40-0017.

Acknowledgements

We warmly thank Pascal Autissier, Ariyan Javanpeykar and the anonymous referee for their useful comments.

References

[1] B. Bakker, Y. Brunebarbe, B. Klingler and J. Tsimerman, Definability of mixed period maps, preprint (2020), https://arxiv.org/abs/2006.12403. Suche in Google Scholar

[2] B. Bakker, Y. Brunebarbe and J. Tsimerman, o-minimal GAGA and a conjecture of Griffiths, Invent. Math. 232 (2023), no. 1, 163–228. 10.1007/s00222-022-01166-1Suche in Google Scholar

[3] V. V. Batyrev and Y. Tschinkel, Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 1, 41–46. Suche in Google Scholar

[4] A. Beauville, Le problème de Torelli, Séminaire Bourbaki. Volume 1985/86, 38ème année. Exposés Nos. 651–668, Astérisque 145/146, Société Mathématique de France, Paris (1987), 7–20. Suche in Google Scholar

[5] P. Berthelot, A. Grothendieck, and L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Math. 225, Springer, Berlin 1971. 10.1007/BFb0066283Suche in Google Scholar

[6] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Math. Monogr. 4, Cambridge University, Cambridge 2006. Suche in Google Scholar

[7] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), no. 2, 337–357. 10.1215/S0012-7094-89-05915-2Suche in Google Scholar

[8] N. Broberg, A note on a paper by R. Heath-Brown: “The density of rational points on curves and surfaces”, J. reine angew. Math. 571 (2004), 159–178. 10.1515/crll.2004.039Suche in Google Scholar

[9] Y. Brunebarbe, Increasing hyperbolicity of varieties supporting a variation of hodge structures with level structures, preprint (2020), https://arxiv.org/abs/2007.12965. Suche in Google Scholar

[10] Y. Brunebarbe, Hyperbolicity in presence of a large local system, preprint (2022), https://arxiv.org/abs/2207.03283. Suche in Google Scholar

[11] F. Campana, Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom. 4 (1995), no. 3, 487–502. Suche in Google Scholar

[12] F. Campana, B. Claudon and P. Eyssidieux, Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire, Compos. Math. 151 (2015), no. 2, 351–376. 10.1112/S0010437X14007751Suche in Google Scholar

[13] H. Chen, Explicit uniform estimation of rational points I. Estimation of heights, J. reine angew. Math. 668 (2012), 59–88. 10.1515/CRELLE.2011.138Suche in Google Scholar

[14] H. Chen, Explicit uniform estimation of rational points II. Hypersurface coverings, J. reine angew. Math. 668 (2012), 89–108. 10.1515/CRELLE.2011.139Suche in Google Scholar

[15] B. Claudon, P. Corvaja, J.-P. Demailly, S. Diverio, J. Duval, C. Gasbarri, S. Kebekus, M. Pau, E. Rousseau, N. Sibony, B. Taji and C. Voisin, Propriétés d’hyperbolicité des variétés algébriques, Panor. Synthèses 56, Société Mathématique de France, Paris 2021. Suche in Google Scholar

[16] P. Deligne, Théorie de Hodge. II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5–57. 10.1007/BF02684692Suche in Google Scholar

[17] J. S. Ellenberg, B. Lawrence and A. Venkatesh, Sparsity of integral points on moduli spaces of varieties, Int. Math. Res. Not. IMRN 2023 (2023), no. 17, 15073–15101. 10.1093/imrn/rnac243Suche in Google Scholar

[18] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366. 10.1007/BF01388432Suche in Google Scholar

[19] G. Faltings, Erratum: “Finiteness theorems for abelian varieties over number fields”, Invent. Math. 75 (1984), no. 2, 381. 10.1007/BF01388572Suche in Google Scholar

[20] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. 10.2307/2944319Suche in Google Scholar

[21] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure and A. Vistoli, Fundamental algebraic geometry, Math. Surveys Monogr. 123, American Mathematical Society, Providence 2005. 10.1090/surv/123Suche in Google Scholar

[22] P. A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Publ. Math. Inst. Hautes Études Sci. 38 (1970), 125–180. 10.1007/BF02684654Suche in Google Scholar

[23] B. H. Gross, A remark on tube domains, Math. Res. Lett. 1 (1994), no. 1, 1–9. 10.4310/MRL.1994.v1.n1.a1Suche in Google Scholar

[24] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie 1960-61. Revêtements étales et groupe fondamental (SGA 1), Doc. Math. 3, Société Mathématique de France, Paris 2003. Suche in Google Scholar

[25] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[26] D. R. Heath-Brown, The density of rational points on curves and surfaces, Ann. of Math. (2) 155 (2002), no. 2, 553–595. 10.2307/3062125Suche in Google Scholar

[27] M. Hindry and J. H. Silverman, Diophantine geometry. An introduction, Grad. Texts in Math. 201, Springer, New York 2000. 10.1007/978-1-4612-1210-2Suche in Google Scholar

[28] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), no. 1, 177–215. 10.1007/BF01244307Suche in Google Scholar

[29] J. Kollár, Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University, Princeton 1995. 10.1515/9781400864195Suche in Google Scholar

[30] A. Malcev, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N. S. 8(50) (1940), 405–422. Suche in Google Scholar

[31] M. Olsson, Algebraic spaces and stacks, Amer. Math. Soc. Colloq. Publ. 62, American Mathematical Society, Providence 2016. Suche in Google Scholar

[32] E. Peyre, Points de hauteur bornée, topologie adélique et mesures de Tamagawa, J. Théor. Nombres Bordeaux 15 (2003), 319–349. 10.5802/jtnb.405Suche in Google Scholar

[33] B. Poonen, Rational points on varieties, Grad. Stud. Math. 186, American Mathematical Society, Providence 2017. 10.1090/gsm/186Suche in Google Scholar

[34] P. Salberger, On the density of rational and integral points on algebraic varieties, J. reine angew. Math. 606 (2007), 123–147. 10.1515/CRELLE.2007.037Suche in Google Scholar

[35] S. H. Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), no. 4, 433–449. 10.24033/bsmf.1905Suche in Google Scholar

[36] W. Schmid, Variation of Hodge structure: The singularities of the period mapping, Invent. Math. 22 (1973), 211–319. 10.1007/BF01389674Suche in Google Scholar

[37] J.-P. Serre, Lectures on the Mordell–Weil theorem, Aspects of Math. E15, Friedrich Vieweg & Sohn, Braunschweig 1989. 10.1007/978-3-663-14060-3Suche in Google Scholar

[38] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, On some applications of Diophantine approximations, Quad./Monogr. 2, Edizioni della Normale, Pisa (2014), 81–138. 10.1007/978-88-7642-520-2_2Suche in Google Scholar

[39] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. 10.1007/BF01388729Suche in Google Scholar

[40] D. Toledo, Projective varieties with non-residually finite fundamental group, Publ. Math. Inst. Hautes Études Sci. 77 (1993), 103–119. 10.1007/BF02699189Suche in Google Scholar

[41] T. Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2022. Suche in Google Scholar

Received: 2022-05-22
Revised: 2023-07-13
Published Online: 2023-11-21
Published in Print: 2024-02-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2023-0079/html
Button zum nach oben scrollen