Home On the integral Hodge conjecture for real abelian threefolds
Article
Licensed
Unlicensed Requires Authentication

On the integral Hodge conjecture for real abelian threefolds

  • Olivier de Gaay Fortman EMAIL logo
Published/Copyright: January 12, 2024

Abstract

We prove the real integral Hodge conjecture for several classes of real abelian threefolds. For instance, we prove the property for real abelian threefolds whose real locus is connected, and for real abelian threefolds A which are the product A = B × E of an abelian surface B and an elliptic curve E with connected real locus E ( ) . Moreover, we show that every real abelian threefold satisfies the real integral Hodge conjecture modulo torsion, and reduce the principally polarized case to the Jacobian case.

Funding statement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754362.

Acknowledgements

This paper is based on results that appear in the last chapter of my PhD thesis [12]. I thank my advisor Olivier Benoist for the great guidance he has given me over the past three years. In particular, I owe him much for drawing my attention to the real integral Hodge conjecture, and for the many discussions we had concerning this project. I thank Nicolas Tholozan for several discussions on moduli of real abelian varieties, and in particular for explaining to me how to prove Theorem 1.5. Moreover, I thank Fabrizio Catanese, François Charles and Javier Fresán for stimulating conversations, and I thank Olivier Benoist and Olivier Wittenberg for useful comments on an earlier version of this paper.

References

[1] M. F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962), 25–45. 10.1016/0040-9383(62)90094-0Search in Google Scholar

[2] E. Ballico, F. Catanese and C. Ciliberto, Trento examples, Classification of irregular varieties (Trento 1990), Lecture Notes in Math. 1515, Springer, Berlin (1992), 134–139. 10.1007/BFb0098342Search in Google Scholar

[3] A. Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, Springer, Berlin (1983), 238–260. 10.1007/BFb0099965Search in Google Scholar

[4] T. Beckmann and O. de Gaay Fortman, Integral Fourier transforms and the integral Hodge conjecture for one-cycles on abelian varieties, Compos. Math. 159 (2023), no. 6, 1188–1213. 10.1112/S0010437X23007133Search in Google Scholar

[5] O. Benoist and J. C. Ottem, Failure of the integral Hodge conjecture for threefolds of Kodaira dimension zero, Comment. Math. Helv. 95 (2020), no. 1, 27–35. 10.4171/CMH/479Search in Google Scholar

[6] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties, I, Invent. Math. 222 (2020), no. 1, 1–77. 10.1007/s00222-020-00965-8Search in Google Scholar

[7] O. Benoist and O. Wittenberg, On the integral Hodge conjecture for real varieties, II, J. Éc. polytech. Math. 7 (2020), 373–429. 10.5802/jep.120Search in Google Scholar

[8] G. Ceresa, C is not algebraically equivalent to C - in its Jacobian, Ann. of Math. (2) 117 (1983), no. 2, 285–291. 10.2307/2007078Search in Google Scholar

[9] F. J. Cirre, Birational classification of hyperelliptic real algebraic curves, The geometry of Riemann surfaces and abelian varieties, Contemp. Math. 397, American Mathematical Society, Providence (2006), 15–25. 10.1090/conm/397/07458Search in Google Scholar

[10] J.-L. Colliot-Thélène and C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), no. 5, 735–801. 10.1215/00127094-1548389Search in Google Scholar

[11] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer, New York 2001. 10.1007/978-1-4757-5406-3Search in Google Scholar

[12] O. de Gaay Fortman, Moduli spaces and algebraic cycles in real algebraic geometry, Ph.D. thesis, École normale supérieure de Paris, 2022. Search in Google Scholar

[13] O. de Gaay Fortman, Real moduli spaces and density of non-simple real abelian varieties, Q. J. Math. 73 (2022), no. 3, 969–989. 10.1093/qmath/haab060Search in Google Scholar

[14] H. Esnault and E. Viehweg, Deligne–Beĭlinson cohomology, Beĭlinson’s conjectures on special values of L-functions, Perspect. Math. 4, Academic Press, Boston (1988), 43–91. 10.1016/B978-0-12-581120-0.50009-4Search in Google Scholar

[15] W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin 1998. 10.1007/978-1-4612-1700-8Search in Google Scholar

[16] W. Fulton and J. Harris, Representation theory, Grad. Texts in Math. 129, Springer, New York 1991. Search in Google Scholar

[17] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192–1200. 10.1007/s00039-001-8228-2Search in Google Scholar

[18] R. Godement, Topologie algébrique et théorie des faisceaux, Publ. Math. Inst. Univ. Strasbourg 13, Hermann, Paris 1958. Search in Google Scholar

[19] C. Grabowski, On the integral Hodge conjecture for 3-folds, Ph.D. thesis, Duke University, 2004. Search in Google Scholar

[20] P. A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 496–541. 10.2307/1970747Search in Google Scholar

[21] B. H. Gross and J. Harris, Real algebraic curves, Ann. Sci. Éc. Norm. Supér. (4) 14 (1981), no. 2, 157–182. 10.24033/asens.1401Search in Google Scholar

[22] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221. 10.2748/tmj/1178244839Search in Google Scholar

[23] R. M. Hain, Torelli groups and geometry of moduli spaces of curves, Current topics in complex algebraic geometry (Berkeley 1992/93), Math. Sci. Res. Inst. Publ. 28, Cambridge University, Cambridge (1995), 97–143. 10.1090/pspum/062.2/1492535Search in Google Scholar

[24] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar

[25] E. W. Howe, Isogeny classes of abelian varieties with no principal polarizations, Moduli of abelian varieties (Texel Island 1999), Progr. Math. 195, Birkhäuser, Basel (2001), 203–216. 10.1007/978-3-0348-8303-0_7Search in Google Scholar

[26] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., Oxford University, Oxford 2006. 10.1093/acprof:oso/9780199296866.001.0001Search in Google Scholar

[27] U. Jannsen, Deligne homology, Hodge- 𝒟 -conjecture, and motives, Beĭlinson’s conjectures on special values of L-functions, Perspect. Math. 4, Academic Press, Boston (1988), 305–372. 10.1016/B978-0-12-581120-0.50016-1Search in Google Scholar

[28] B. Kahn, Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Comm. Algebra 15 (1987), no. 4, 695–711. 10.1080/00927872.1987.12088443Search in Google Scholar

[29] V. A. Krasnov, Harnack–Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 2, 268–297. 10.1070/IM1984v022n02ABEH001441Search in Google Scholar

[30] V. A. Krasnov, Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 4, 716–746. Search in Google Scholar

[31] V. A. Krasnov, On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 3, 36–52. 10.1070/IM1995v044n03ABEH001608Search in Google Scholar

[32] F. Mangolte, Variétés algébriques réelles, Cours Spéc. 24, Société Mathématique de France, Paris 2017. Search in Google Scholar

[33] F. Mangolte and J. van Hamel, Algebraic cycles and topology of real Enriques surfaces, Compos. Math. 110 (1998), no. 2, 215–237. 10.1023/A:1000223408405Search in Google Scholar

[34] J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs 1984), Springer, New York (1986), 167–212. 10.1007/978-1-4613-8655-1_7Search in Google Scholar

[35] B. Moonen and A. Polishchuk, Divided powers in Chow rings and integral Fourier transforms, Adv. Math. 224 (2010), no. 5, 2216–2236. 10.1016/j.aim.2009.12.025Search in Google Scholar

[36] D. Mumford, Abelian varieties, Tata Inst. Fundam. Res. Stud. Math. 5, Tata Institute of Fundamental Research, Bombay 2008. Search in Google Scholar

[37] M. V. Nori, Cycles on the generic abelian threefold, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 3, 191–196. 10.1007/BF02864390Search in Google Scholar

[38] A. R. Pears, Dimension theory of general spaces, Cambridge University, Cambridge 1975. Search in Google Scholar

[39] C. A. M. Peters and J. H. M. Steenbrink, Monodromy of variations of Hodge structure, Acta Appl. Math. 75 (2003), no. 1–3, 183–194. 10.1023/A:1022344213544Search in Google Scholar

[40] C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge structures, Ergeb. Math. Grenzgeb. (3) 52, Springer, Berlin 2008. Search in Google Scholar

[41] A. Rosenschon and V. Srinivas, The Griffiths group of the generic abelian 3-fold, Cycles, motives and Shimura varieties, Tata Inst. Fundam. Res. Stud. Math. 21, Tata Institute of Fundamental Research, Mumbai (2010), 449–467. Search in Google Scholar

[42] C. Schoen, Complex varieties for which the Chow group mod n is not finite, J. Algebraic Geom. 11 (2002), no. 1, 41–100. 10.1090/S1056-3911-01-00291-0Search in Google Scholar

[43] S. Schreieder, Stably irrational hypersurfaces of small slopes, J. Amer. Math. Soc. 32 (2019), no. 4, 1171–1199. 10.1090/jams/928Search in Google Scholar

[44] M. Seppälä and R. Silhol, Moduli spaces for real algebraic curves and real abelian varieties, Math. Z. 201 (1989), no. 2, 151–165. 10.1007/BF01160673Search in Google Scholar

[45] R. Silhol, Real algebraic surfaces, Lecture Notes in Math. 1392, Springer, Berlin 1989. 10.1007/BFb0088815Search in Google Scholar

[46] B. Totaro, Torsion algebraic cycles and complex cobordism, J. Amer. Math. Soc. 10 (1997), no. 2, 467–493. 10.1090/S0894-0347-97-00232-4Search in Google Scholar

[47] B. Totaro, Complex varieties with infinite Chow groups modulo 2, Ann. of Math. (2) 183 (2016), no. 1, 363–375. 10.4007/annals.2016.183.1.7Search in Google Scholar

[48] B. Totaro, The integral Hodge conjecture for 3-folds of Kodaira dimension zero, J. Inst. Math. Jussieu 20 (2021), no. 5, 1697–1717. 10.1017/S1474748019000665Search in Google Scholar

[49] J. A. van Hamel, Algebraic cycles and topology of real algebraic varieties, Ph.D. thesis, Vrije Universiteit Amsterdam, Amsterdam 1997. Search in Google Scholar

[50] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spéc. 10, Société Mathématique de France, Paris 2002. Search in Google Scholar

[51] C. Voisin, On integral Hodge classes on uniruled or Calabi–Yau threefolds, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math. 45, Mathematocal Society of Japan, Tokyo (2006), 43–73. 10.2969/aspm/04510043Search in Google Scholar

[52] A. Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524. 10.2307/2372670Search in Google Scholar

Received: 2022-12-05
Revised: 2023-10-15
Published Online: 2024-01-12
Published in Print: 2024-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2023-0082/html
Scroll to top button