Startseite Codimension 1 Mukai foliations on complex projective manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Codimension 1 Mukai foliations on complex projective manifolds

  • Carolina Araujo EMAIL logo und Stéphane Druel
Veröffentlicht/Copyright: 15. Januar 2015

Abstract

In this paper we classify codimension 1 Mukai foliations on complex projective manifolds.

Funding statement: The first named author was partially supported by CNPq and Faperj Research Fellowships. The second named author was partially supported by the CLASS project of the ANR.

Acknowledgements

Much of this work was developed during the authors’ visits to IMPA and Institut Fourier. We would like to thank both institutions for their support and hospitality. We also thank the referee for their thoughtful suggestions on how to improve the presentation of some of the results.

References

[1] M. Andreatta and J. A. Wiśniewski, A view on contractions of higher-dimensional varieties, Algebraic geometry (Santa Cruz 1995), Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence (1997), 153–183. 10.1090/pspum/062.1/1492522Suche in Google Scholar

[2] C. Araujo and A.-M. Castravet, Classification of 2-Fano manifolds with high index, preprint (2012), http://arxiv.org/abs/1206.1357. Suche in Google Scholar

[3] C. Araujo and S. Druel, On Fano foliations, Adv. Math. 238 (2013), 70–118. 10.1007/978-3-319-24460-0_1Suche in Google Scholar

[4] C. Araujo and S. Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann. 360 (2014), no. 3–4, 769–798. 10.1007/s00208-014-1053-3Suche in Google Scholar

[5] C. Araujo and S. Druel, On Fano foliations 2, preprint (2014), http://arxiv.org/abs/1404.4628. 10.1007/978-3-319-24460-0_1Suche in Google Scholar

[6] C. Araujo, S. Druel and S. J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), no. 2, 233–253. 10.1007/s00222-008-0130-1Suche in Google Scholar

[7] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Exp. Math. 16, Walter de Gruyter, Berlin 1995. 10.1515/9783110871746Suche in Google Scholar

[8] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, preprint (2001), http://www.mat.uniroma2.it/~mcquilla/files/rat.ps. 10.1007/978-3-319-24460-0_2Suche in Google Scholar

[9] S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. 10.1090/S1056-3911-2012-00574-8Suche in Google Scholar

[10] F. Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 499–630. 10.5802/aif.2027Suche in Google Scholar

[11] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), no. 3, 263–273. 10.1007/BF01425242Suche in Google Scholar

[12] D. Cerveau and A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two in 𝐂P(n), n3, Ann. of Math. (2) 143 (1996), no. 3, 577–612. 10.2307/2118537Suche in Google Scholar

[13] K. Cho, Y. Miyaoka and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto 1997), Adv. Stud. Pure Math. 35, Mathematical Society of Japan, Tokyo (2002), 1–88. 10.2969/aspm/03510001Suche in Google Scholar

[14] J. Déserti and D. Cerveau, Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr. (N.S.) 103 (2005). 10.24033/msmf.415Suche in Google Scholar

[15] I. Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver 1981), Lecture Notes in Math. 956, Springer-Verlag, Berlin (1982), 34–71. 10.1007/BFb0101508Suche in Google Scholar

[16] S. Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), no. 1, 19–30. 10.1007/s00229-004-0479-4Suche in Google Scholar

[17] H. Flenner, Divisorenklassengruppen quasihomogener Singularitäten, J. reine angew. Math. 328 (1981), 128–160. 10.1515/crll.1981.328.128Suche in Google Scholar

[18] T. Fujita, On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Japan 32 (1980), no. 4, 709–725. 10.2969/jmsj/03240709Suche in Google Scholar

[19] T. Fujita, On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Japan 33 (1981), no. 3, 415–434. 10.2969/jmsj/03330415Suche in Google Scholar

[20] T. Fujita, Classification of projective varieties of Δ-genus one, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 3, 113–116. 10.3792/pjaa.58.113Suche in Google Scholar

[21] T. Fujita, On the structure of polarized manifolds with total deficiency one. III, J. Math. Soc. Japan 36 (1984), no. 1, 75–89. 10.2969/jmsj/03610075Suche in Google Scholar

[22] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, Cambridge 1990. 10.1017/CBO9780511662638Suche in Google Scholar

[23] T. Fujita, On singular del Pezzo varieties, Algebraic geometry (L’Aquila 1988), Lecture Notes in Math. 1417, Springer-Verlag, Berlin (1990), 117–128. 10.1007/BFb0083337Suche in Google Scholar

[24] W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer-Verlag, Berlin 1998. 10.1007/978-1-4612-1700-8Suche in Google Scholar

[25] X. Gómez-Mont, Integrals for holomorphic foliations with singularities having all leaves compact, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 2, 451–458. 10.5802/aif.1173Suche in Google Scholar

[26] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag, New York 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[27] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. 10.1007/BF01467074Suche in Google Scholar

[28] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math. E31 Friedr. Vieweg & Sohn, Braunschweig 1997. 10.1007/978-3-663-11624-0Suche in Google Scholar

[29] J.-M. Hwang, Stability of tangent bundles of low-dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998), no. 4, 599–606. 10.1007/s002080050237Suche in Google Scholar

[30] V. Iskovskikh and Y. G. Prokhorov, Algebraic geometry V: Fano varieties, Encyclopaedia Math. Sci. 47, Springer-Verlag, Berlin 1999. Suche in Google Scholar

[31] J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer-Verlag, Berlin 1979. 10.1007/BFb0063393Suche in Google Scholar

[32] S. Kebekus, L. Solá Conde and M. Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65–81. 10.1090/S1056-3911-06-00435-8Suche in Google Scholar

[33] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47. 10.1215/kjm/1250523432Suche in Google Scholar

[34] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer-Verlag, Berlin 1996. 10.1007/978-3-662-03276-3Suche in Google Scholar

[35] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Suche in Google Scholar

[36] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3) 48, Springer-Verlag, Berlin 2004. 10.1007/978-3-642-18808-4Suche in Google Scholar

[37] F. Loray, J. V. Pereira and F. Touzet, Singular foliations with trivial canonical class, preprint (2011), http://arxiv.org/abs/1107.1538v1. 10.1007/s00222-018-0806-0Suche in Google Scholar

[38] F. Loray, J. V. Pereira and F. Touzet, Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr. 286 (2013), no. 8–9, 921–940. 10.1002/mana.201100354Suche in Google Scholar

[39] Z. H. Luo, Factorization of birational morphisms of regular schemes, Math. Z. 212 (1993), no. 4, 505–509. 10.1007/BF02571670Suche in Google Scholar

[40] S. Mukai, Birational classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1992), no. 9, 3000–3002. 10.1073/pnas.86.9.3000Suche in Google Scholar PubMed PubMed Central

[41] T. Peternell and J. A. Wiśniewski, On stability of tangent bundles of Fano manifolds with b2=1, J. Algebraic Geom. 4 (1995), no. 2, 363–384. Suche in Google Scholar

[42] J. A. Wiśniewski, On Fano manifolds of large index, Manuscripta Math. 70 (1991), 145–152. 10.1007/BF02568366Suche in Google Scholar

Received: 2014-4-23
Revised: 2014-9-18
Published Online: 2015-1-15
Published in Print: 2017-6-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0110/html
Button zum nach oben scrollen