Home Complex Monge–Ampère equations on quasi-projective varieties
Article
Licensed
Unlicensed Requires Authentication

Complex Monge–Ampère equations on quasi-projective varieties

  • Eleonora Di Nezza EMAIL logo and Chinh H. Lu
Published/Copyright: September 26, 2014

Abstract

We introduce generalized Monge–Ampère capacities and use these to study complex Monge–Ampère equations whose right-hand side is smooth outside a divisor. We prove, in many cases, that there exists a unique normalized solution which is smooth outside the divisor. Our results still hold if the divisor is replaced by any closed subset.

Funding statement: The authors are partially supported by the French ANR project MACK. The second-named author is supported by the European Research Councils.

Acknowledgements

It is our pleasure to thank our advisors Vincent Guedj and Ahmed Zeriahi for providing constant help, many suggestions and encouragements. We also thank Robert Berman and Bo Berndtsson for very useful comments. We are indebted to Sébastien Boucksom and Henri Guenancia for a very careful reading of a preliminary version of this paper, for their suggestions which improve the presentation of the paper. We would like to thank the referee for many helpful comments.

References

[1] P. Ahag, U. Cegrell, S. Kolodziej, H. H. Pham and A. Zeriahi, Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math. 222 (2009), 2036–2058. 10.1016/j.aim.2009.07.002Search in Google Scholar

[2] H. Auvray, The space of Poincaré type Kähler metrics on the complement of a divisor, preprint (2011), http://arxiv.org/abs/1109.3159. 10.1515/crelle-2014-0058Search in Google Scholar

[3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1–2, 1–40. 10.1007/BF02392348Search in Google Scholar

[4] S. Benelkourchi, V. Guedj and A. Zeriahi, A priori estimates for solutions of Monge–Ampère equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 1, 81–96. 10.2422/2036-2145.2008.1.03Search in Google Scholar

[5] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, preprint (2012), http://arxiv.org/abs/1111.7158. 10.1515/crelle-2016-0033Search in Google Scholar

[6] R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi, A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179–245. 10.1007/s10240-012-0046-6Search in Google Scholar

[7] R. J. Berman and H. Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs, preprint (2013), http://arxiv.org/abs/1304.2087. 10.1007/s00039-014-0301-8Search in Google Scholar

[8] S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi, Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199–262. 10.1007/s11511-010-0054-7Search in Google Scholar

[9] F. Campana, H. Guenancia and M. Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 879–916. 10.24033/asens.2205Search in Google Scholar

[10] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187–217. 10.1007/BF02392899Search in Google Scholar

[11] U. Cegrell, The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 159–179. 10.5802/aif.2014Search in Google Scholar

[12] U. Cegrell, S. Kołodziej and A. Zeriahi, Subextension of plurisubharmonic functions with weak singularities, Math. Z. 250 (2005), no. 1, 7–22. 10.1007/s00209-004-0714-4Search in Google Scholar

[13] X. X. Chen, S. K. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds, I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. (2014), 10.1090/S0894-0347-2014-00799-2. 10.1090/S0894-0347-2014-00799-2Search in Google Scholar

[14] X. X. Chen, S. K. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds, II: Limits with cone angle less than 2π, J. Amer. Math. Soc. (2014), 10.1090/S0894-0347-2014-00800-6. 10.1090/S0894-0347-2014-00800-6Search in Google Scholar

[15] X. X. Chen, S. K. Donaldson and S. Sun, Kähler–Einstein metrics on Fano manifolds, III: Limits as cone angle approaches 2π and completion of the main proof, preprint (2013), http://arxiv.org/abs/1302.0282. Search in Google Scholar

[16] J. P. Demailly, Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math. E26, Vieweg-Verlag, Braunschweig (1994), 105–126. 10.1007/978-3-663-14196-9_4Search in Google Scholar

[17] E. Di Nezza and H. C. Lu, Generalized Monge–Ampère capacities, preprint (2014), http://arxiv.org/abs/1402.2497; to appear in Int. Math. Res. Not. IMRN. 10.1093/imrn/rnu166Search in Google Scholar

[18] S. Dinew, Uniqueness in (X,ω), J. Funct. Anal. 256 (2009), no. 7, 2113–2122. 10.1016/j.jfa.2009.01.019Search in Google Scholar

[19] S. K. Donaldson, Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer-Verlag, Heidelberg (2012), 49–79. 10.1007/978-3-642-28821-0_4Search in Google Scholar

[20] S. K. Donaldson and S. Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, preprint (2012), http://arxiv.org/abs/1206.2609. 10.1007/s11511-014-0116-3Search in Google Scholar

[21] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. 10.1090/S0894-0347-09-00629-8Search in Google Scholar

[22] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607–639. 10.1007/BF02922247Search in Google Scholar

[23] V. Guedj and A. Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. 10.1016/j.jfa.2007.04.018Search in Google Scholar

[24] V. Guedj and A. Zeriahi, Stability of solutions to complex Monge–Ampère equations in big cohomology classes, Math. Res. Lett. 19 (2012), no. 5, 1025–1042. 10.4310/MRL.2012.v19.n5.a6Search in Google Scholar

[25] H. J. Hein, Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc. 25 (2012), no. 2, 355–393. 10.1090/S0894-0347-2011-00723-6Search in Google Scholar

[26] R. Kobayashi, Kähler–Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984), no. 2, 399–418. Search in Google Scholar

[27] S. Kołodziej, The range of the complex Monge–Ampère operator, Indiana Univ. Math. J. 43 (1994), no. 4, 1321–1338. 10.1512/iumj.1995.44.2007Search in Google Scholar

[28] S. Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1998), 69–117. 10.1007/BF02392879Search in Google Scholar

[29] S. Kołodziej, The complex Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 3, 667–686. 10.1512/iumj.2003.52.2220Search in Google Scholar

[30] M. Păun, Regularity properties of the degenerate Monge–Ampère equations on compact Kähler manifolds, Chin. Ann. Math. Ser. B 29 (2008), no. 6, 623–630. 10.1007/s11401-007-0457-8Search in Google Scholar

[31] Y. T. Siu, Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics, Birkhäuser-Verlag, Basel 1987. 10.1007/978-3-0348-7486-1Search in Google Scholar

[32] H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans n, Bull. Soc. Math. France 100 (1972), 353–408. 10.24033/bsmf.1743Search in Google Scholar

[33] G. Tian, K-stability and Kähler–Einstein metrics, preprint (2013), http://arxiv.org/abs/1211.4669. 10.1002/cpa.21578Search in Google Scholar

[34] G. Tian and S. T. Yau, Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (San Diego 1986), Adv. Ser. Math. Phys. 1, World Scientific, Singapore (1987), 574–628. 10.1142/9789812798411_0028Search in Google Scholar

[35] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3 (1990), no. 3, 579–609. 10.1090/S0894-0347-1990-1040196-6Search in Google Scholar

[36] G. Tian and S. T. Yau, Complete Kähler manifolds with zero Ricci curvature. II, Invent. Math. 106 (1991), no. 1, 27–60. 10.1007/BF01243902Search in Google Scholar

[37] H. Tsuji, Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), 123–133. 10.1007/BF01449219Search in Google Scholar

[38] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. 10.1002/cpa.3160310304Search in Google Scholar

[39] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001), 671–703. 10.1512/iumj.2001.50.2062Search in Google Scholar

Received: 2014-2-2
Revised: 2014-7-9
Published Online: 2014-9-26
Published in Print: 2017-6-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0090/html
Scroll to top button