Home Codimension 1 Mukai foliations on complex projective manifolds
Article
Licensed
Unlicensed Requires Authentication

Codimension 1 Mukai foliations on complex projective manifolds

  • Carolina Araujo EMAIL logo and Stéphane Druel
Published/Copyright: January 15, 2015

Abstract

In this paper we classify codimension 1 Mukai foliations on complex projective manifolds.

Funding statement: The first named author was partially supported by CNPq and Faperj Research Fellowships. The second named author was partially supported by the CLASS project of the ANR.

Acknowledgements

Much of this work was developed during the authors’ visits to IMPA and Institut Fourier. We would like to thank both institutions for their support and hospitality. We also thank the referee for their thoughtful suggestions on how to improve the presentation of some of the results.

References

[1] M. Andreatta and J. A. Wiśniewski, A view on contractions of higher-dimensional varieties, Algebraic geometry (Santa Cruz 1995), Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence (1997), 153–183. 10.1090/pspum/062.1/1492522Search in Google Scholar

[2] C. Araujo and A.-M. Castravet, Classification of 2-Fano manifolds with high index, preprint (2012), http://arxiv.org/abs/1206.1357. Search in Google Scholar

[3] C. Araujo and S. Druel, On Fano foliations, Adv. Math. 238 (2013), 70–118. 10.1007/978-3-319-24460-0_1Search in Google Scholar

[4] C. Araujo and S. Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann. 360 (2014), no. 3–4, 769–798. 10.1007/s00208-014-1053-3Search in Google Scholar

[5] C. Araujo and S. Druel, On Fano foliations 2, preprint (2014), http://arxiv.org/abs/1404.4628. 10.1007/978-3-319-24460-0_1Search in Google Scholar

[6] C. Araujo, S. Druel and S. J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), no. 2, 233–253. 10.1007/s00222-008-0130-1Search in Google Scholar

[7] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Exp. Math. 16, Walter de Gruyter, Berlin 1995. 10.1515/9783110871746Search in Google Scholar

[8] F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, preprint (2001), http://www.mat.uniroma2.it/~mcquilla/files/rat.ps. 10.1007/978-3-319-24460-0_2Search in Google Scholar

[9] S. Boucksom, J.-P. Demailly, M. Păun and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. 10.1090/S1056-3911-2012-00574-8Search in Google Scholar

[10] F. Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 499–630. 10.5802/aif.2027Search in Google Scholar

[11] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), no. 3, 263–273. 10.1007/BF01425242Search in Google Scholar

[12] D. Cerveau and A. Lins Neto, Irreducible components of the space of holomorphic foliations of degree two in 𝐂P(n), n3, Ann. of Math. (2) 143 (1996), no. 3, 577–612. 10.2307/2118537Search in Google Scholar

[13] K. Cho, Y. Miyaoka and N. I. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto 1997), Adv. Stud. Pure Math. 35, Mathematical Society of Japan, Tokyo (2002), 1–88. 10.2969/aspm/03510001Search in Google Scholar

[14] J. Déserti and D. Cerveau, Feuilletages et actions de groupes sur les espaces projectifs, Mém. Soc. Math. Fr. (N.S.) 103 (2005). 10.24033/msmf.415Search in Google Scholar

[15] I. Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver 1981), Lecture Notes in Math. 956, Springer-Verlag, Berlin (1982), 34–71. 10.1007/BFb0101508Search in Google Scholar

[16] S. Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), no. 1, 19–30. 10.1007/s00229-004-0479-4Search in Google Scholar

[17] H. Flenner, Divisorenklassengruppen quasihomogener Singularitäten, J. reine angew. Math. 328 (1981), 128–160. 10.1515/crll.1981.328.128Search in Google Scholar

[18] T. Fujita, On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Japan 32 (1980), no. 4, 709–725. 10.2969/jmsj/03240709Search in Google Scholar

[19] T. Fujita, On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Japan 33 (1981), no. 3, 415–434. 10.2969/jmsj/03330415Search in Google Scholar

[20] T. Fujita, Classification of projective varieties of Δ-genus one, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 3, 113–116. 10.3792/pjaa.58.113Search in Google Scholar

[21] T. Fujita, On the structure of polarized manifolds with total deficiency one. III, J. Math. Soc. Japan 36 (1984), no. 1, 75–89. 10.2969/jmsj/03610075Search in Google Scholar

[22] T. Fujita, Classification theories of polarized varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, Cambridge 1990. 10.1017/CBO9780511662638Search in Google Scholar

[23] T. Fujita, On singular del Pezzo varieties, Algebraic geometry (L’Aquila 1988), Lecture Notes in Math. 1417, Springer-Verlag, Berlin (1990), 117–128. 10.1007/BFb0083337Search in Google Scholar

[24] W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer-Verlag, Berlin 1998. 10.1007/978-1-4612-1700-8Search in Google Scholar

[25] X. Gómez-Mont, Integrals for holomorphic foliations with singularities having all leaves compact, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 2, 451–458. 10.5802/aif.1173Search in Google Scholar

[26] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer-Verlag, New York 1977. 10.1007/978-1-4757-3849-0Search in Google Scholar

[27] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. 10.1007/BF01467074Search in Google Scholar

[28] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math. E31 Friedr. Vieweg & Sohn, Braunschweig 1997. 10.1007/978-3-663-11624-0Search in Google Scholar

[29] J.-M. Hwang, Stability of tangent bundles of low-dimensional Fano manifolds with Picard number 1, Math. Ann. 312 (1998), no. 4, 599–606. 10.1007/s002080050237Search in Google Scholar

[30] V. Iskovskikh and Y. G. Prokhorov, Algebraic geometry V: Fano varieties, Encyclopaedia Math. Sci. 47, Springer-Verlag, Berlin 1999. Search in Google Scholar

[31] J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer-Verlag, Berlin 1979. 10.1007/BFb0063393Search in Google Scholar

[32] S. Kebekus, L. Solá Conde and M. Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65–81. 10.1090/S1056-3911-06-00435-8Search in Google Scholar

[33] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47. 10.1215/kjm/1250523432Search in Google Scholar

[34] J. Kollár, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer-Verlag, Berlin 1996. 10.1007/978-3-662-03276-3Search in Google Scholar

[35] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge 1998. 10.1017/CBO9780511662560Search in Google Scholar

[36] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3) 48, Springer-Verlag, Berlin 2004. 10.1007/978-3-642-18808-4Search in Google Scholar

[37] F. Loray, J. V. Pereira and F. Touzet, Singular foliations with trivial canonical class, preprint (2011), http://arxiv.org/abs/1107.1538v1. 10.1007/s00222-018-0806-0Search in Google Scholar

[38] F. Loray, J. V. Pereira and F. Touzet, Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr. 286 (2013), no. 8–9, 921–940. 10.1002/mana.201100354Search in Google Scholar

[39] Z. H. Luo, Factorization of birational morphisms of regular schemes, Math. Z. 212 (1993), no. 4, 505–509. 10.1007/BF02571670Search in Google Scholar

[40] S. Mukai, Birational classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA 86 (1992), no. 9, 3000–3002. 10.1073/pnas.86.9.3000Search in Google Scholar PubMed PubMed Central

[41] T. Peternell and J. A. Wiśniewski, On stability of tangent bundles of Fano manifolds with b2=1, J. Algebraic Geom. 4 (1995), no. 2, 363–384. Search in Google Scholar

[42] J. A. Wiśniewski, On Fano manifolds of large index, Manuscripta Math. 70 (1991), 145–152. 10.1007/BF02568366Search in Google Scholar

Received: 2014-4-23
Revised: 2014-9-18
Published Online: 2015-1-15
Published in Print: 2017-6-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0110/html
Scroll to top button