Startseite Computational chemistry unveiled: a critical analysis of theoretical coordination chemistry and nanostructured materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computational chemistry unveiled: a critical analysis of theoretical coordination chemistry and nanostructured materials

  • Mudassir Ur. Rahman , Shahab Khan ORCID logo EMAIL logo , Hamayun Khan , Arshad Ali und Fatima Sarwar
Veröffentlicht/Copyright: 2. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The article discusses the profound impact of advancements in computing and software on theoretical simulations, marking a transformative era in computational chemistry. Focused on theoretical coordination chemistry, it delves into the historical context and underscores the contemporary importance of computational methods. Coordination materials, involving metal atoms surrounded by ligands, are highlighted for their pivotal roles across scientific disciplines. The manipulation of ligands and metal ions within these compounds offers diverse functionalities, from catalytic modifications to enhancing oxygen transport in biological systems. The comprehensive review explores the basics of coordination materials, detailing examples across various categories. Theoretical approaches, including quantum mechanics methods like density functional theory (DFT) and Monte Carlo simulations, are thoroughly examined. The article emphasizes crystallography techniques for Metal-Organic Frameworks (MOFs) and concludes by emphasizing the exponential growth in computing power, making modeling and simulation indispensable in molecular and material research. The development of an integrated computational strategy rooted in DFT is highlighted as a crucial advancement, bridging precision and computational practicality. This holistic approach advances understanding in coordination chemistry and nanostructured materials, paving the way for innovative applications and discoveries.


Corresponding author: Shahab Khan, Department of Chemistry, University of Malakand, Malakand, 18800, Pakistan, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The literature survey and collection of data were performed by Mudassir Ur Rahman. Fatima Sarwar validated and organized the data, while Hamayun Khan improved the manuscript quality. The Figures, language and grammar were improved by Arshad Ali. While the manuscript sitting writing, data presentation, editing, validation, revision, and supervision was performed by Shahab Khan.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Bates, SP, Van Santen, RA. The molecular basis of zeolite catalysis: a review of theoretical simulations. Adv Catal 1998;42:1–114. https://doi.org/10.1016/s0360-0564(08)60627-6.Suche in Google Scholar

2. Fromm, KM. Coordination compounds. In: Kirk-Othmer Encyclopedia of chemical technology. Massachusetts: University of Massachusetts.Suche in Google Scholar

3. Fantacci, S, De Angelis, F. A computational approach to the electronic and optical properties of Ru (II) and Ir (III) polypyridyl complexes: applications to DSC, OLED and NLO. Coord Chem Rev 2011;255:2704–26. https://doi.org/10.1016/j.ccr.2011.03.008.Suche in Google Scholar

4. Scrivener, KL, Kirkpatrick, RJ. Innovation in use and research on cementitious material. Cement Concr Res 2008;38:128–36. https://doi.org/10.1016/j.cemconres.2007.09.025.Suche in Google Scholar

5. Prigogine, I, Rice, SA, editors. Advances in Chemical Physics. New York: John Wiley & Sons; 2009, vol. 250.Suche in Google Scholar

6. Werner, A. Beitrag zur Konstution anorganische Verbindungen. Z Anorg Chem 1893;3:267–330. https://doi.org/10.1002/zaac.18930030136.Suche in Google Scholar

7. Constable, EC. What’s in a name?—a short history of coordination chemistry from then to now. Chemistry 2019;1:126–63. https://doi.org/10.3390/chemistry1010010.Suche in Google Scholar

8. Lipkowitz, KB, Boyd, DB, editors. Reviews in computational chemistry. New York: VCH; 1990–1999, vol 1–13.10.1002/9780470125786Suche in Google Scholar

9. Niu, S, Hall, MB. Theoretical studies on reactions of transition-metal complexes. Chem Rev 2000;100:353–406. https://doi.org/10.1021/cr980404y.Suche in Google Scholar PubMed

10. Blacque, O, Berke, H. Alfred Werner’s chemistry of dinuclear complexes – a test case of Werner’s intu. Chimia 2014;68:298–9.10.2533/chimia.2014.299Suche in Google Scholar PubMed

11. Tong, M-L, Chen, X-M. Synthesis of coordination compounds and coordination polymers. In: Modern inorganic synthetic chemistry. Changchun, China: Elsevier; 2017:189–217 pp.10.1016/B978-0-444-63591-4.00008-2Suche in Google Scholar

12. Belser, K, Vig Slenters, T, Pfumbidzai, C, Upert, G, Mirolo, L, Fromm, K, et al.. Silver nanoparticle formation in different sizes induced by peptides identified within split-and-mix libraries. Angew Chem Int Ed 2009;48:3661–4. https://doi.org/10.1002/anie.200806265.Suche in Google Scholar PubMed

13. Dorn, T, Fromm, KM, Janiak, C. [Ag (isonicotinamide)2NO3]2 – a stable form of silver nitrate. Aust J Chem 2006;59:22–5. https://doi.org/10.1071/ch05270.Suche in Google Scholar

14. Meggers, E. Targeting proteins with metal complexes. Chem Commun 2009;9:1001. https://doi.org/10.1039/b813568a.Suche in Google Scholar PubMed

15. Sathyadevi, P, Krishnamoorthy, P, Butorac, RR, Cowley, AH, Bhuvanesh, NSP, Dharmaraj, N. Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(ii) complexes: a systematic investigation. Dalton Trans 2011;40:9690. https://doi.org/10.1039/c1dt10767d.Suche in Google Scholar PubMed

16. Ricco, R, Pfeiffer, C, Sumida, K, Sumby, CJ, Falcaro, P, Furukawa, S, et al.. Emerging applications of metal–organic frameworks. CrystEngComm 2016;18:6532–42. https://doi.org/10.1039/c6ce01030j.Suche in Google Scholar

17. Liu, J-Q, Luo, ZD, Pan, Y, Kumar Singh, A, Trivedi, M, Kumar, A. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coord Chem Rev 2020;406:213145. https://doi.org/10.1016/j.ccr.2019.213145.Suche in Google Scholar

18. Robin, AY, Fromm, KM. Coordination polymer networks with O-and N-donors: what they are, why and how they are made. Coord Chem Rev 2006;250:2127–57. https://doi.org/10.1016/j.ccr.2006.02.013.Suche in Google Scholar

19. Kauffman, GB. Nomenclature of inorganic chemistry: recommendations 1990: International Union of Pure and Applied Chemistry. Edited by GJ Leigh. Oxford, London, Cambridge, MA: Blackwell Scientific Publications, Oxford, London, Cambridge, MA, 1990, xxiv+ 289 pp., $70.00 hardback, $27.50 paperback. Polyhedron 1991;10:1843–4.10.1002/ange.19911030637Suche in Google Scholar

20. Block, BP, Powell, WH, Fernelius, WC. Inorganic chemical nomenclature: principles and practice. New York: American Chemical Society; 1990.Suche in Google Scholar

21. Kubas, GJ. Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals. Acc Chem Res 1988;21:120–8. https://doi.org/10.1021/ar00147a005.Suche in Google Scholar

22. Albinati, A, Venanzi, LM. Transition metal hydrides as ligands. Coord Chem Rev 2000;200–202:687–715. https://doi.org/10.1016/s0010-8545(00)00257-5.Suche in Google Scholar

23. Stryer, L. Biochemistry. New York: W. H. Freeman and Company; 1988.Suche in Google Scholar

24(a). Johnson, RD. Coordination compounds in ECT, 1st ed. New York: The University of Pittsburgh WILEY online library; 2000, vol 4:379–91 pp.Suche in Google Scholar

(b) Khan, S, Ullah, I, Rahman, MU, Khan, H, Shah, AB, Althomali, RH, et al.. Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives. Rev Inorg Chem 2024;48:1–24. https://doi.org/10.1515/revic-2023-0030.Suche in Google Scholar

25. Braunschweig, H, Colling, M. Transition metal complexes of boron – synthesis, structure and reactivity. Coord Chem Rev 2001;223:1–51. https://doi.org/10.1016/s0010-8545(01)00378-2.Suche in Google Scholar

26. Feng, L, Hao, Y, Liu, A, Slanina, Z. Trapping metallic oxide clusters inside fullerene cages. Acc Chem Res 2019;52:1802–11. https://doi.org/10.1021/acs.accounts.9b00206.Suche in Google Scholar PubMed

27. Prokopuk, N, Shriver, DF. The octahedral M6Y8 and M6Y12 clusters of group 4 and 5 transition metals. Adv Inorg Chem 1998;46:1–49. https://doi.org/10.1016/s0898-8838(08)60148-8.Suche in Google Scholar

28. Khan, S, Rahman, FU, Ullah, I, Khan, S, Gul, Z, Sadiq, F, et al.. Water desalination, and energy consumption applications of 2D nano materials: hexagonal boron nitride, graphenes, and quantum dots. Rev Inorg Chem 2024;48:1–18. https://doi.org/10.1515/revic-2024-0013.Suche in Google Scholar

29(a). Vicentini, G, Zinner, LB, Zukerman-Schpector, J, Zinner, K. Luminescence and structure of europium compounds. Coord Chem Rev 2000;196:353–82. https://doi.org/10.1016/s0010-8545(99)00220-9.Suche in Google Scholar

(b) Piguet, C, Buenzli, J-CG. Mono- and polymetallic lanthanide-containing functional assemblies: a field between tradition and novelty. Chem Soc Rev 1999;28:347–58. https://doi.org/10.1039/a804240c.Suche in Google Scholar

30. Evans, WJ. Perspectives in reductive lanthanide chemistry. Coord Chem Rev 2000;206–207:263–83. https://doi.org/10.1016/s0010-8545(00)00267-8.Suche in Google Scholar

31(a). Kharisov, BI, Mendez-Rojas, MA. State-of-the-art coordination chemistry of radioactive elements. Russ Chem Rev 2001;70:865–84. https://doi.org/10.1070/rc2001v070n10abeh000646.Suche in Google Scholar

(b) Thuéry, P, Nierlich, M, Harrowfield, J, Ogden, M. Phenoxide complexes of f-elements. In: Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Saadioui, M., editors. Calixarenes. Dordrecht: Springer; 2001. https://doi.org/10.1007/0-306-47522-7_30.Suche in Google Scholar

(c) Sessler, JL, Vivian, AE, Seidel, D, Burell, AK, Hoehner, M, Mody, TD, et al.. Actinide expanded porphyrin complexes. Coord Chem Rev 2001;216–217:411–34. https://doi.org/10.1016/s0010-8545(00)00395-7.Suche in Google Scholar

32(a). Bauer, ED, Thompson, JD. Plutonium-based heavy-fermion systems. Annu Rev Condens Matter Phys 2015;6:137–53. https://doi.org/10.1146/annurev-conmatphys-031214-014508.Suche in Google Scholar

(b) Khan, S, Zheng, H-W, Jiao, H, Saleem, S, Gul, Z, Al-Humaidi, JY, et al.. Reduction mechanism and energy transfer between Eu3+ and Eu2+ in Eu-doped materials synthesized in air atmosphere. Rev Inorg Chem 2024;48:20–35. https://doi.org/10.1515/revic-2024-0011.Suche in Google Scholar

33. Comba, P, Kerscher, M. Computation of structures and properties of transition metal compounds. Coord Chem Rev 2009;253:564–74. https://doi.org/10.1016/j.ccr.2008.05.019.Suche in Google Scholar

34. Comba, P. Computational coordination chemistry. In: Comprehensive coordination chemistry III. New York, USA: Elsevier; 2021:241–55 pp.10.1016/B978-0-08-102688-5.00023-4Suche in Google Scholar

35(a). Eisenstein, O, Maron, L. DFT studies of some structures and reactions of lanthanides complexes. J Organomet Chem 2002;647:190–7. https://doi.org/10.1016/s0022-328x(01)01407-3.Suche in Google Scholar

(b) Shaik, S, Kumar, D, De Visser, SP, Altum, A, Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 2005;105:2279–328. https://doi.org/10.1021/cr030722j.Suche in Google Scholar PubMed

36(a). Neese, F. A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry. J Biol Inorg Chem 2006;11:702–11. https://doi.org/10.1007/s00775-006-0138-1.Suche in Google Scholar PubMed

(b) Seth, M, Autschbach, J, Ziegler, T. Calculation of the term of magnetic circular dichroism. A time-dependent density functional theory approach. J Chem Theor Comput 2007;3:434–47. https://doi.org/10.1021/ct600283t.Suche in Google Scholar PubMed

37(a). Neese, F. A spectroscopy oriented configuration interaction procedure. J Chem Phys 2003;119:9428–43. https://doi.org/10.1063/1.1615956.Suche in Google Scholar

(b) Neese, F. Theoretical spectroscopy of model-nonheme [Fe(IV)OL5]2+ complexes in their lowest triplet and quintet states using multireference ab initio and density functional theory methods. J Inorg Biochem 2006;100:716–26. https://doi.org/10.1016/j.jinorgbio.2006.01.020.Suche in Google Scholar PubMed

38. Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964;136:B864. https://doi.org/10.1103/physrev.136.b864.Suche in Google Scholar

39. Romani, D, Noureddine, O, Issaoui, N, Brandán, SA. Properties and reactivities of niclosamide in different media, a potential antiviral to treatment of COVID-19 by using DFT calculations and molecular docking. Biointerface Res Appl Chem 2020;10:7295–328.10.33263/BRIAC106.72957328Suche in Google Scholar

40. Kazachenko, AS, Medimagh, M, Issaoui, N, Al-Dossary, O, Wojcik, MJ, Kazachenko, AS, et al.. Sulfamic acid/water complexes (SAA-H2O(1-8)) intermolecular hydrogen bond interactions: FTIR, X-ray, DFT and AIM analysis. J Mol Struct 2022;1265:133394. https://doi.org/10.1016/j.molstruc.2022.133394.Suche in Google Scholar

41. Gatfaoui, S, Issaoui, N, Roisnel, T, Marouani, H. Synthesis, experimental and computational study of a non-centrosymmetric material 3-methylbenzylammonium trioxonitrate. J Mol Struct 2021;1225:129132. https://doi.org/10.1016/j.molstruc.2020.129132.Suche in Google Scholar

42. Daghar, C, Issaoui, N, Roisnel, T, Dorcet, V, Marouani, H. Empirical and computational studies on newly synthesis cyclohexylammonium perchlorate. J Mol Struct 2021;1230:129820. https://doi.org/10.1016/j.molstruc.2020.129820.Suche in Google Scholar

43. Kohn, W, Sham, L. Self-consistent equations including exchange and correlation effects. J Phys Rev A 1965;140:1133. https://doi.org/10.1103/physrev.140.a1133.Suche in Google Scholar

44. Atanasov, M, Comba, P, Martin, B, Müller, V, Rajaraman, G, Rohwer, H, et al.. DFT models for copper (II) bispidine complexes: structures, stabilities, isomerism, spin distribution, and spectroscopy. J Comput Chem 2006;27:1263–77. https://doi.org/10.1002/jcc.20412.Suche in Google Scholar PubMed

45. de Visser, SP, Quesne, MG, Martin, B, Comba, P, Ryde, U. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes. Chem Commun 2014;50:262–82. https://doi.org/10.1039/c3cc47148a.Suche in Google Scholar PubMed

46(a). Becke, AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev 1988;38:3098–100. https://doi.org/10.1103/physreva.38.3098.Suche in Google Scholar PubMed

(b) Becke, AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys B 1993;98:5648–52. https://doi.org/10.1063/1.464913.Suche in Google Scholar

47(a). Schwabe, T, Grimme, S. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 2007;9:3397. https://doi.org/10.1039/b704725h.Suche in Google Scholar PubMed

(b) Grimme, S, Hansen, A, Brandenburg, MG, Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem Rev 2016;116:5105–54. https://doi.org/10.1021/acs.chemrev.5b00533.Suche in Google Scholar PubMed

48(a). Zhao, Y, Truhlar, DG. Benchmark databases for nonbonded interactions and their use to test density functional theory. J Chem Theor Comput 2005;1:415–32. https://doi.org/10.1021/ct049851d.Suche in Google Scholar PubMed

(b) Tomasi, J, Mennucci, B, Cammi, R. Chem Rev 2005;105:2999–3093.10.1021/cr9904009Suche in Google Scholar

49(a). Siegbahn, PEM, Crabtree, DH. Mechanism of C−H activation by diiron methane Monooxygenases:  quantum chemical studies. J Am Chem Soc 1997;119:3103. https://doi.org/10.1021/ja963939m.Suche in Google Scholar

(b) Ramos, MJ, Fernades, PA. Computational enzymatic catalysis. Acc Chem Res 2008;41:689. https://doi.org/10.1021/ar7001045.Suche in Google Scholar PubMed

(c) Siegbahn, EM, Himo, F. The quantum chemical cluster approach for modeling enzyme reactions. WIREs Comput Mol Sci 2011;1:323. https://doi.org/10.1002/wcms.13.Suche in Google Scholar

(d) Blomberg, MRA, Borowski, T, Himo, F, Liao, R-Z, Siegbahn, PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014;114:3601–58. https://doi.org/10.1021/cr400388t.Suche in Google Scholar PubMed

50. Figgis, BN, Hitchman, MA. Ligand field theory and its applications. Weinheim, New York: Wiley VCH; 1995.Suche in Google Scholar

51(a). Atanasov, M, Comba, P, Helmle, S, Müller, D, Neese, F. Zero-field splitting in a series of structurally related mononuclear NiII–bispidine complexes. Inorg Chem 2012;51:12324–35. https://doi.org/10.1021/ic3016047.Suche in Google Scholar PubMed

(b) Singh, SK, Eng, J, Atanasov, M, Neese, F. Covalency and chemical bonding in transition metal complexes: an ab initio based ligand field perspective. Coord Chem Rev 2017;344:2–5. https://doi.org/10.1016/j.ccr.2017.03.018.Suche in Google Scholar

(c) Khan, S, Rahman, M, Marwani, HM, Althomali, RH, Rahman, MM. Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies. ZPC 2024;238:291–311. https://doi.org/10.1515/zpch-2023-0378.Suche in Google Scholar

52(a). Atanasov, M, Daul, CA, Rauzy, C. New insights into the effects of covalency on the ligand field parameters: a DFT study. Chem Phys Lett 2003;367:737–46. https://doi.org/10.1016/s0009-2614(02)01762-1.Suche in Google Scholar

(b) Atanasov, M, Daul, CA, Rauzy, C. A DFT based ligand field theory. Optical spectra and chemical bonding in inorganic compounds. Struct Bond 2004;106:97–125.10.1007/b11308Suche in Google Scholar

(c) Neese, F, Petrenko, T, Ganyushin, D, Olbrich, G. Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: multiplets, spin-orbit coupling and resonance Raman intensities. Coord Chem Rev 2007;251:288–327. https://doi.org/10.1016/j.ccr.2006.05.019.Suche in Google Scholar

53. Mingos, DMP, Day, P, Dahl, JP. Molecular electronic structures of transition metal complexes II. Berlin: Springer Science & Business Media; 2012, vol 2.10.1007/978-3-642-27378-0Suche in Google Scholar

54. Zadrozny, JM, Xiao, DJ, Atanasov, M, Long, GJ, Grandjean, F, Neese, F, et al.. Magnetic blocking in a linear iron (I) complex. Nat Chem 2013;5:577–81. https://doi.org/10.1038/nchem.1630.Suche in Google Scholar PubMed

55(a). Nazir, S, Zhang, J-M, Junaid, M, Saleem, S, Ali, A, Ullah, A, et al.. Metal-based nanoparticles: basics, types, fabrications and their electronic applications. ZPC 2024;238:965–95. https://doi.org/10.1515/zpch-2023-0375.Suche in Google Scholar

(b) Jung, J, Islam, MA, Pecoraro, VL, Mallah, T, Berthon, C, Bolvin, H. Derivation of lanthanide series crystal field parameters from first principles. Chem Eur J 2019;25:15112–22. https://doi.org/10.1002/chem.201903141.Suche in Google Scholar PubMed

56. Habli, H, Mejrissi, L, Issaoui, N, Yaghmour, SJ, Oujia, B, Gadéa, FX. Ab initio calculation of the electronic structure of the strontium hydride ion (SrH+). Int J Quant Chem 2015;115:172–86.10.1002/qua.24813Suche in Google Scholar

57(a). Lang, L, Atanasov, M, Neese, F. Improvement of ab initio ligand field theory by means of multistate perturbation theory. J Phys Chem A 2020;124:1025–37. https://doi.org/10.1021/acs.jpca.9b11227.Suche in Google Scholar PubMed PubMed Central

(b) Jung, J, Atanasov, M, Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg Chem 2017;56:8802–16. https://doi.org/10.1021/acs.inorgchem.7b00642.Suche in Google Scholar PubMed

(c) Vitova, T, Pdchenko, I, Fellhauer, D, Bagus, PS, Joly, Y, Pruessmann, T, et al.. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat Commun 2017;8:16053. https://doi.org/10.1038/ncomms16053.Suche in Google Scholar PubMed PubMed Central

58(a). Neese, FJ. Theoretical spectroscopy of model-nonheme [Fe(IV)OL5]2+ complexes in their lowest triplet and quintet states using multireference ab initio and density functional theory methods. Inorg Biochem 2006;100:716–26. https://doi.org/10.1016/j.jinorgbio.2006.01.020.Suche in Google Scholar PubMed

(b) Geng, C, Ye, S, Neese, F. Analysis of reaction channels for alkane hydroxylation by nonheme iron(IV)–oxo complexes. Angew Chem Int Ed 2010;49:5717–20. https://doi.org/10.1002/anie.201001850.Suche in Google Scholar PubMed

(c) Comba, P, Faltermeier, D, Krieg, S, Martin, B, Rajaraman, G. Spin state and reactivity of iron(iv)oxido complexes with tetradentate bispidine ligands. Dalton Trans 2020;49:2888–94. https://doi.org/10.1039/c9dt04578c.Suche in Google Scholar PubMed

(d) Ye, S, Geng, CY, Shaik, S, Neese, F. Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C–H bond activation by non-heme iron(iv)–oxo cores. Phys Chem Chem Phys 2013;15:8017–30. https://doi.org/10.1039/c3cp00080j.Suche in Google Scholar PubMed

(e) Mandal, D, Mallik, D, Shaik, S. Kinetic isotope effect determination probes the spin of the transition state, its stereochemistry, and its ligand sphere in hydrogen abstraction reactions of oxoiron(IV) complexes. Acc Chem Res 2018;51:107–17. https://doi.org/10.1021/acs.accounts.7b00442.Suche in Google Scholar PubMed

59. Khan, S, Ullah, I, Khan, S, Ajmal, S, Saqib, N, Rahman, FU, et al.. Advancements in nanohybrids: from coordination materials to flexible solar cells. J Poly Sci Eng 2024;7:4276. https://doi.org/10.24294/jpse.v7i1.4276.Suche in Google Scholar

60(a). Rezac, J, Hobza, P. Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard,” CCSD (T) at the complete basis set limit? J Chem Theor Comput 2013;9:2151–5. https://doi.org/10.1021/ct400057w.Suche in Google Scholar PubMed

(b) Riplinger, C, Sandhoefer, B, Hansen, A, Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J Chem Phys 2013;139:134101. https://doi.org/10.1063/1.4821834.Suche in Google Scholar PubMed

(c) Riplinger, C, Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 2013;138:034106. https://doi.org/10.1063/1.4773581.Suche in Google Scholar PubMed

61. Saitow, M, Neese, F. Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 2018;149:034104. https://doi.org/10.1063/1.5027114.Suche in Google Scholar PubMed

62. Comba, P, Faltermeier, D, Krieg, S, Martin, B, Rajaraman, G. Spin state and reactivity of iron(iv)oxido complexes with tetradentate bispidine ligands. Dalton Trans 2020;49:2888–94. https://doi.org/10.1039/c9dt04578c.Suche in Google Scholar PubMed

63(a). Cao, L, Caldararu, O, Ryde, U. Protonation and reduction of the FeMo cluster in nitrogenase studied by quantum mechanics/molecular mechanics (QM/MM) calculations. J Chem Theor Comput 2018;14:6653–78. https://doi.org/10.1021/acs.jctc.8b00778.Suche in Google Scholar PubMed

(b) Cao, L, Börner, MC, Bergmann, J, Caldararu, O, Ryde, U. Geometry and electronic structure of the P-cluster in nitrogenase studied by combined quantum mechanical and molecular mechanical calculations and quantum refinement. Inorg Chem 2019;58:9672–90. https://doi.org/10.1021/acs.inorgchem.9b00400.Suche in Google Scholar PubMed

(c) Cao, L, Caldararu, O, Rosenzweig, AC, Ryde, U. Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Angew Chem Int Ed 2018;57:162–6. https://doi.org/10.1002/anie.201708977.Suche in Google Scholar PubMed PubMed Central

(d) Cao, L, Caldararu, O, Ryde, U. Does the crystal structure of vanadium nitrogenase contain a reaction intermediate? Evidence from quantum refinement. J Biol Inorg Chem 2020;25:847–61. https://doi.org/10.1007/s00775-020-01813-z.Suche in Google Scholar PubMed PubMed Central

64(a). Comba, P, Sickmüller, AF. Modeling of the redox properties of (Hexaamine)cobalt(III/II) couples. Inorg Chem 1997;36:4500–7. https://doi.org/10.1021/ic9701625.Suche in Google Scholar PubMed

(b) Comba, P, Jakob, H. Reduction potentials of tetraaminecopper(II/I) couples. Helv Chim Acta 1997;80:1983–91. https://doi.org/10.1002/hlca.19970800616.Suche in Google Scholar

(c) Khan, S, Zahoor, M, Rahman, MU, Gul, Z. Cocrystals; basic concepts, properties and formation strategies. ZPC 2023;237:273–332. https://doi.org/10.1515/zpch-2022-0175.Suche in Google Scholar

(d) Comba, P, Kerscher, M, Lampeka, YD, Lötzbeyer, L, Pritzkow, H, Tsymbal, LV. Structural properties of cyclopentanone-bridged bis-macrocyclic ligand dicopper(II) complexes in the solid and in solution:  a successful test of the MM-EPR method. Inorg Chem 2003;42:3387–9. https://doi.org/10.1021/ic026265r.Suche in Google Scholar PubMed

65(a). Wuethrich, K. The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination. Acc Chem Res 1989;22:36–44. https://doi.org/10.1021/ar00157a006.Suche in Google Scholar

(b) Bertini, I, Luchinat, C, Parigi, G, Pieratelli, R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 2008;29:3782–90. https://doi.org/10.1039/b719526e.Suche in Google Scholar PubMed

(c) Bernhardt, PV, Comba, P. Prediction and interpretation of electronic spectra of transition metal complexes via the combination of molecular mechanics and angular overlap model calculations. Inorg Chem 1993;32:2798–803. https://doi.org/10.1021/ic00065a003.Suche in Google Scholar

(d) Comba, P. Prediction and interpretation of EPR spectra of low-spin iron(III) complexes with the MM-AOM method. Inorg Chem 1994;33:4577–83. https://doi.org/10.1021/ic00098a027.Suche in Google Scholar

(e) Comba, P, Hambley, TW, Hitchman, MA, Stratemeier, H. Interpretation of electronic and EPR spectra of copper(II) amine complexes: a test of the MM-AOM method. Inorg Chem 1995;34:3903–11. https://doi.org/10.1021/ic00119a011.Suche in Google Scholar

66(a). Comba, P, Kerscher, M, Lampeka, YD, Lötzbeyer, L, Pritzkow, H, Tsymbal, LV. Structural properties of cyclopentanone-bridged bis-macrocyclic ligand dicopper(II) complexes in the solid and in solution:  a successful test of the MM-EPR method. Inorg Chem 2003;42:3387–9. https://doi.org/10.1021/ic026265r.Suche in Google Scholar PubMed

(b) Comba, P, Dovalil, N, Gahan, LR, Haberhauer, G, Hanson, GR, Noble, CJ, et al.. Chem Eur J 2012;18:2578–90.10.1002/chem.201101975Suche in Google Scholar

(c) Comba, P, Sickmüller, AF. Lösungsstrukturen eines Paares stabiler Hexaamincobalt(III/II)-Konformere. Angew Chem 1997;109:2089. https://doi.org/10.1002/ange.19971091823.Suche in Google Scholar

(d) Comba, P, Lampeka, YD, Prikhod’ko, A, Rajaraman, G. Determination of the solution structures of melamine-based bis- and tris-macrocyclic ligand copper(II) complexes. Inorg Chem 2006;45:3632–8. https://doi.org/10.1021/ic052124o.Suche in Google Scholar PubMed

67(a). Colman, PM, Freeman, HC, Guss, JM, Murata, M, Norris, V, Ramshaw, JAM, et al.. X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 1978;272:319–24. https://doi.org/10.1038/272319a0.Suche in Google Scholar

(b) Solomon, EI, Baldwin, MJ, Lowery, MD. Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 1992;92:521–42. https://doi.org/10.1021/cr00012a003.Suche in Google Scholar

(c) Gul, Z, Salman, M, Khan, S, Shehzad, A, Ullah, H, Irshad, M, et al.. Single organic ligands act as a bifunctional sensor for subsequent detection of metal and cyanide ions, a statistical approach toward coordination and sensitivity. Crit Rev Anal Chem 2023;54:1–17. https://doi.org/10.1080/10408347.2023.2186165.Suche in Google Scholar PubMed

(d) Khan, S. Phase engineering and impact of external stimuli for phase tuning in 2D materials. AECM 2024;5:40–55. https://doi.org/10.37256/aecm.5120243886.Suche in Google Scholar

68(a). Pierloot, K, De Kerpel, JOA, Ryde, U, Roos, BO. Theoretical study of the electronic spectrum of plastocyanin. J Am Chem Soc 1997;119:218–26. https://doi.org/10.1021/ja962381f.Suche in Google Scholar

(b) Pierloot, K, DeKerpel, JOA, Ryde, U, Olsson, MHM, Roos, BO. Relation between the structure and spectroscopic properties of blue copper proteins. J Am Chem Soc 1998;120:13156–66. https://doi.org/10.1021/ja982385f.Suche in Google Scholar

(c) Ryde, U, Olsson, MHM, Roos, BO, Borin, AC. A theoretical study of the copper-cysteine bond in blue copper proteins. Theor Chem Acc 2001;105:452–62. https://doi.org/10.1007/s002140000242.Suche in Google Scholar

69. Comba, P, Müller, V, Remenyi, RJ. Interpretation of the temperature-dependent color of blue copper protein mutants. Inorg Biochem 2004;98:896. and are used with permission. https://doi.org/10.1016/j.jinorgbio.2003.12.004.Suche in Google Scholar PubMed

70. Comba, P, Llédos, A, Maseras, F, Remenyi, R. Hybrid quantum mechanics/molecular mechanics studies of the active site of the blue copper proteins amicyanin and rusticyanin. Inorg Chim Acta 2001;324:21. https://doi.org/10.1016/s0020-1693(01)00497-2.Suche in Google Scholar

71. Comba, P, Remenyi, R. A new molecular mechanics force field for the oxidized form of blue copper proteins. J Comput Chem 2002;23:697. https://doi.org/10.1002/jcc.10084.Suche in Google Scholar PubMed

72(a). Deeth, R. Comprehensive molecular mechanics model for oxidized type I copper Proteins:  active site structures, strain energies, and entatic bulging. J Inorg Chem 2007;46:4492–503. https://doi.org/10.1021/ic062399j.Suche in Google Scholar PubMed

(b) Comba, P, Grimm, L, Orvig, C, Rück, K, Wadepohl, H. Synthesis and coordination chemistry of hexadentate picolinic acid based bispidine ligands. Inorg Chem 2016;55:12531–43. https://doi.org/10.1021/acs.inorgchem.6b01787.Suche in Google Scholar PubMed

(c) Hagen, WR. Hypothesis: entatic versus ecstatic states in metalloproteins. Metallomics 2019;11:1768–78. https://doi.org/10.1039/c9mt00208a.Suche in Google Scholar PubMed

73. Kong, J, White, CA, Krylov, AI, Sherrill, CD, Adamson, RD, Furlani, TR, et al.. Q-Chem 2.0: a high-performanceab initio electronic structure program package. J Comput Chem 2000;16:1532–48.10.1002/1096-987X(200012)21:16<1532::AID-JCC10>3.0.CO;2-WSuche in Google Scholar

74. Slater, JC. Adv Quantum Chem 1972;6:1.10.1016/S0065-3276(08)60541-9Suche in Google Scholar

75. Takano, Y, Onishi, T, Kitagawa, Y, Soda, T, Yoshioka, Y, Yamaguchi, K. Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: comparison of broken-symmetry approaches. Chem Phys Lett 2000;319:223–30.10.1016/S0009-2614(00)00166-4Suche in Google Scholar

76. Xiong, D, Fang, T, Yu, L, Sima, X, Zhu, W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 2011;409:1444–52. https://doi.org/10.1016/j.scitotenv.2011.01.015.Suche in Google Scholar

77. Baun, A, Hartmann, NB, Grieger, K, Kusk, KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008;17:387–95. https://doi.org/10.1007/s10646-008-0208-y.Suche in Google Scholar

78. Venigalla, S, Dhail, D, Ranjan, P, Jain, S, Chakraborty, T. Computational study about cytotoxicity of metal oxide nanoparticles invoking nano-QSAR. New Front Chem 2013;23:123–30.Suche in Google Scholar

79. Maher, MA, Naha, PC, Mukherjee, SP, Byrne, HJ. Numerical simulations of in vitro nanoparticle toxicity–the case of poly (amido amine) dendrimers. Toxicol Vitro 2014;28:1449–60. https://doi.org/10.1016/j.tiv.2014.07.014.Suche in Google Scholar

80. Xu, J, Sang, P, Zhao, L, Xing, W, Yan, Z. Adsorption and separation of H2S in HKUST-1 metal organic frameworks: a Monte Carlo simulation study. In: 5th international conference on information engineering for mechanics and materials. Atlantis Press; 2015.10.2991/icimm-15.2015.56Suche in Google Scholar

81(a). Karra, JR, Walton, KS. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J Phys Chem C 2010;114:15735–40. https://doi.org/10.1021/jp105519h.Suche in Google Scholar

(b) Mayo, SL, Olafson, BD, Goddard, WA. DREIDING: a generic force field for molecular simulations. J Phys Chem 1990;94:8897–909. https://doi.org/10.1021/j100389a010.Suche in Google Scholar

(c) Kristóf, T, Liszi, J. Effective intermolecular potential for fluid hydrogen sulfide. J Phys Chem B 1997;101:5480–3. https://doi.org/10.1021/jp9707495.Suche in Google Scholar

82. González-Delgado, AM, Giner-Casares, JJ, Brezesinski, G, Regnouf-de-Vains, JB, Camacho, L. Langmuir monolayers of an inclusion complex formed by a new calixarene derivative and fullerene. Langmuir 2012;28:12114–21. https://doi.org/10.1021/la302440g.Suche in Google Scholar PubMed

83. Gupta, A, Chempath, S, Sanborn, MJ, Clark, LA, Snurr, RQ. Object-oriented programming paradigms for molecular modeling. Mol Simulat 2003;29:29–46. https://doi.org/10.1080/0892702031000065719.Suche in Google Scholar

84. ara, RK, Walto, KS. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal−organic framework Cu-BTC. Langmuir 2008;24:8620–6. https://doi.org/10.1021/la800803w.Suche in Google Scholar PubMed

85. Medimagh, M, Mleh, CB, Issaoui, N, Kazachenko, AS, Roisnel, T, Al-DOSSARY, OM, et al.. DFT and molecular docking study of the effect of a green solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1,4-diium bis (hydrogenoxalate) compound. J Mol Liq 2023;369:120851. https://doi.org/10.1016/j.molliq.2022.120851.Suche in Google Scholar

86. talay, VE, Ölüç, I, Karahan, M. Modeling of BSA–metal ion-acrylic acid complex by theoretical methods: semi-empirical PM6 and docking study. Acta Phys Pol, A 2018;134:1201–3.10.12693/APhysPolA.134.1200Suche in Google Scholar

87(a). Khan, S, Ullah, I, Khan, H, Rahman, FU, Rahman, MU, Saleem, MA, et al.. Green synthesis of AgNPs from leaves extract of Saliva Sclarea, their characterization, antibacterial activity, and catalytic reduction ability. ZPC 2024;238:931–47. https://doi.org/10.1515/zpch-2023-0363.Suche in Google Scholar

(b) Bakhtiar, R, Ochiai, EI. Pharmacological applications of inorganic complexes. Gen Pharmacol 1999;32:525. https://doi.org/10.1016/s0306-3623(98)00223-7.Suche in Google Scholar PubMed

(c) Guo, Z, Sadler, PJ. Metals in medicine. Angew Chem Int Ed 1999;38:1512. https://doi.org/10.1002/(sici)1521-3773(19990601)38:11<1512::aid-anie1512>3.0.co;2-y.10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-YSuche in Google Scholar

88. Sathyadevi, P, Krishnamoorthy, P, Butorac, RR, Cowley, AH, Bhuvanesh, NSP, Dharmaraj, N. Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni (II) complexes: a systematic investigation. Dalton Trans 2011;40:9690–702. https://doi.org/10.1039/c1dt10767d.Suche in Google Scholar PubMed

89(a). Gharagozlou, M, Boghaei, DM. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Spectrochim Acta, Part A 2008;71:1617. https://doi.org/10.1016/j.saa.2008.06.027.Suche in Google Scholar PubMed

(b) Krishnamoorthy, P, Sathyadevi, P, Cowley, AH, Butorac, RR, Dharmaraj, N. Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur J Med Chem 2011;46:3376. https://doi.org/10.1016/j.ejmech.2011.05.001.Suche in Google Scholar PubMed

(c) Liu, H, Shi, X, Xu, M, Li, Z, Huang, J, Bai, D, et al.. Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: structure and biological evaluation. Eur J Med Chem 2011;46:1638. https://doi.org/10.1016/j.ejmech.2011.02.012.Suche in Google Scholar PubMed

(d) Sathyadevi, P, Krishnamoorthy, P, Jayanthi, E, Butorac, RR, Cowley, AH, Dharmaraj, N. Studies on the effect of metal ions of hydrazone complexes on interaction with nucleic acids, bovine serum albumin and antioxidant properties. Inorg Chim Acta 2012;384:83. https://doi.org/10.1016/j.ica.2011.11.033.Suche in Google Scholar

(e) Samari, F, Hemmateenejad, B, Shamsipur, M, Rashidi, M, Samouei, H. Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: a spectroscopic approach. Inorg Chem 2012;51:3454. https://doi.org/10.1021/ic202141g.Suche in Google Scholar PubMed

90. Dennington, R, Keith, T, Millam, J. GaussView, Version 5. Shawnee Mission, KS: Semichem Inc.; 2009.Suche in Google Scholar

91. Stewart, JJP. Application of the PM6 method to modeling the solid state. J Mol Model 2008;14:499. https://doi.org/10.1007/s00894-008-0299-7.Suche in Google Scholar PubMed PubMed Central

92. Wells, SA, Cessford, NF, Seaton, NA, Düren, T. Early stages of phase selection in MOF formation observed in molecular Monte Carlo simulations. RSC Adv 2019;9:14382–90. https://doi.org/10.1039/c9ra01504c.Suche in Google Scholar PubMed PubMed Central

93. Duren, T, Bae, YS, Snurr, RQ. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem Soc Rev 2009;38:1237–47. https://doi.org/10.1039/b803498m.Suche in Google Scholar PubMed

94(a). Karahan, IH, Ozdemir, R. Effect of Cu concentration on the formation of Cu1–xZnx shape memory alloy thin films. Appl Surf Sci 2014;318:100–4. https://doi.org/10.1016/j.apsusc.2014.01.119.Suche in Google Scholar

(b) Lennox, MJ, Bound, M, Henley, A, Besley, E. The right isotherms for the right reasons? Validation of generic force fields for prediction of methane adsorption in metal-organic frameworks. Mol Simulat 2017;43:828–37. https://doi.org/10.1080/08927022.2017.1301665.Suche in Google Scholar

95(a). Duren, T, Bae, YS, Snurr, RQ. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem Soc Rev 2009;38:1237–47. https://doi.org/10.1039/b803498m.Suche in Google Scholar

(b) Coudert, FX, Fuchs, AH. Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 2016;307:211–36. https://doi.org/10.1016/j.ccr.2015.08.001.Suche in Google Scholar

(c) Lennox, MJ, Bound, M, Henley, A, Besley, E. Mol Simulat 2017;43:828–37. https://doi.org/10.1080/08927022.2017.1301665.Suche in Google Scholar

96. Khan, S, Ajmal, S, Hussain, T, Rahman, MU. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. J UQ Univ Appl Sci 2023;9:1–6. https://doi.org/10.1007/s43994-023-00083-0.Suche in Google Scholar

97(a). Yoneya, M, Tsuzuki, S, Aoyagi, M. Simulation of metal–organic framework self-assembly. Phys Chem Chem Phys 2015;17:8649–52. https://doi.org/10.1039/c5cp00379b.Suche in Google Scholar PubMed

(b) Yoneya, M, Tsuzuki, S, Yamaguchi, T, Sato, S, Fujita, M. Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. ACS Nano 2014;8:1290–6. https://doi.org/10.1021/nn404595j.Suche in Google Scholar PubMed

(c) Yoneya, M, Yamaguchi, T, Sato, S, Fujita, M. Simulation of metal–ligand self-assembly into spherical complex M6L8. J Am Chem Soc 2012;134:14401–7. https://doi.org/10.1021/ja303542r.Suche in Google Scholar PubMed

98. Van Vleet, MJ, Weng, TT, Li, XY, Schmidt, JR. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem Rev 2018;118:3681–721. https://doi.org/10.1021/acs.chemrev.7b00582.Suche in Google Scholar PubMed

99(a). Jhung, SH, Lee, JH, Forster, PM, Ferey, G, Cheetham, AK, Chang, JS. Microwave synthesis of hybrid inorganic–organic porous materials: phase‐selective and rapid crystallization. Chem Eur J 2006;12:7899–905. https://doi.org/10.1002/chem.200600270.Suche in Google Scholar PubMed

(b) Forster, PM, Stock, N, Cheetham, AK. A high-throughput investigation of the role of pH, temperature, concentration, and time on the synthesis of hybrid inorganic–organic materials. Angew Chem, Int Ed 2005;44:7608–11. https://doi.org/10.1002/anie.200501766.Suche in Google Scholar PubMed

(c) Forster, PM, Burbank, AR, Livage, C, Ferey, G, Cheetham, AK. The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chem Commun 2004;4:368–9. https://doi.org/10.1039/b311156c.Suche in Google Scholar PubMed

100(a). Aqvist, J, Warshel, A. Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease. J Am Chem Soc 1990;112:2860–8. https://doi.org/10.1021/ja00164a003.Suche in Google Scholar

(b) Pang, YP, Xu, KU, El Yazal, J, Prendergast, FG. Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Protein Sci 2000;9:1857–65.Suche in Google Scholar

(c) Pang, YP. Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 2001;45:183–9. https://doi.org/10.1002/prot.1138.Suche in Google Scholar PubMed

(d) Duarte, F, Bauer, P, Barrozo, A, Amrein, BA, Purg, M, Aqvist, J, et al.. Force field independent metal parameters using a nonbonded dummy model. J Phys Chem B 2014;118:4351–62. https://doi.org/10.1021/jp501737x.Suche in Google Scholar PubMed PubMed Central

101(a). Yoneya, M, Tsuzuki, S, Aoyagi, M. Simulation of metal–organic framework self-assembly. Phys Chem Chem Phys 2015;17:8649–52. https://doi.org/10.1039/c5cp00379b.Suche in Google Scholar PubMed

(b) Yoneya, M, Tsuzuki, S, Yamaguchi, T, Sato, S, Fujita, M. Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. ACS Nano 2014;8:1290–6. https://doi.org/10.1021/nn404595j.Suche in Google Scholar PubMed

(c) Yoneya, M, Yamaguchi, T, Sato, S, Fujita, M. Simulation of metal–ligand self-assembly into spherical complex M6L8. J Am Chem Soc 2012;134:14401–7. https://doi.org/10.1021/ja303542r.Suche in Google Scholar PubMed

102(a). Jorgensen, WL, Chandrasekhar, J, Madura, JD, Impey, RW, Klein, ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–35. https://doi.org/10.1063/1.445869.Suche in Google Scholar

(b) Babu, CS, Lim, C. Empirical force fields for biologically active divalent metal cations in water. J Phys Chem A 2006;110:691–9. https://doi.org/10.1021/jp054177x.Suche in Google Scholar PubMed

(c) Jorgensen, WL, Gao, J. Monte Carlo simulations of the hydration of ammonium and carboxylate ions. J Phys Chem 1986;90:2174–82. https://doi.org/10.1021/j100401a037.Suche in Google Scholar

(d) Jorgensen, WL, Madura, JD, Swenson, CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 1984;106:6638–46. https://doi.org/10.1021/ja00334a030.Suche in Google Scholar

(e) Price, DJ, Roberts, JD, Jorgensen, WL. Conformational complexity of succinic acid and its monoanion in the gas phase and in Solution:  ab initio calculations and Monte Carlo simulations. J Am Chem Soc 1998;120:9672–9. https://doi.org/10.1021/ja9812397.Suche in Google Scholar

(f) Jorgensen, WL, Maxwell, DS, TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225–36. https://doi.org/10.1021/ja9621760.Suche in Google Scholar

(g) Jorgensen, WL, Swenson, CJ. Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 1985;107:569–78. https://doi.org/10.1021/ja00289a008.Suche in Google Scholar

103(a). Duren, T, Bae, YS, Snurr, RQ. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem Soc Rev 2009;38:1237–47. https://doi.org/10.1039/b803498m.Suche in Google Scholar PubMed

(b) Yoneya, M, Tsuzuki, S, Yamaguchi, T, Sato, S, Fujita, M. Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. ACS Nano 2014;8:1290–6. https://doi.org/10.1021/nn404595j.Suche in Google Scholar PubMed

104. Yoneya, M, Tsuzuki, S, Aoyagi, M. Simulation of metal–organic framework self-assembly. Phys Chem Chem Phys 2015;17:8649–52. https://doi.org/10.1039/c5cp00379b.Suche in Google Scholar PubMed

105. Manousiouthakis, VI, Deem, MW. Strict detailed balance is unnecessary in Monte Carlo simulation. J Chem Phys 1999;110:2753–6. https://doi.org/10.1063/1.477973.Suche in Google Scholar

106. Frenkel, D, Smit, B. Understanding molecular simulation: from algorithms to applications, 2nd ed. San Diego: Academic Press; 2002.Suche in Google Scholar

107(a). Whitelam, S, Feng, EH, Hagan, MF, Geissler, PL. The role of collective motion in examples of coarsening and self-assembly. Soft Matter 2009;5:1251–62. https://doi.org/10.1039/b810031d.Suche in Google Scholar PubMed PubMed Central

(b) Ruzicka, S, Allen, MP. Collective translational and rotational Monte Carlo cluster move for general pairwise interaction. Phys Rev E: Stat, Nonlinear, Soft Matter Phys 2014;90:033302. https://doi.org/10.1103/PhysRevE.90.033302.Suche in Google Scholar PubMed

108(a). Bhattacharyay, A, Troisi, A. Self-assembly of sparsely distributed molecules: an efficient cluster algorithm. Chem Phys Lett 2008;458:210–13. https://doi.org/10.1016/j.cplett.2008.04.052.Suche in Google Scholar

(b) Luijten, E. Fluid simulation with the geometric cluster Monte Carlo algorithm. Comput Sci Eng 2006;8:20–9. https://doi.org/10.1109/mcse.2006.25.Suche in Google Scholar

(c) Liu, JW, Luijten, E. Generalized geometric cluster algorithm for fluid simulation. Phys Rev E: Stat, Nonlinear, Soft Matter Phys 2005;71:066701. https://doi.org/10.1103/physreve.71.066701.Suche in Google Scholar

(d) Liu, JW, Luijten, E. Rejection-free geometric cluster algorithm for complex fluids. Phys Rev Lett 2004;92:035504. https://doi.org/10.1103/physrevlett.92.035504.Suche in Google Scholar PubMed

(e) Sanz, E, Marenduzzo, D. Dynamic Monte Carlo versus Brownian dynamics: a comparison for self-diffusion and crystallization in colloidal fluids. J Chem Phys 2010;132:194102. https://doi.org/10.1063/1.3414827.Suche in Google Scholar PubMed

(f) Fusco, D, Charbonneau, P. Crystallization of asymmetric patchy models for globular proteins in solution. Phys Rev E: Stat, Nonlinear, Soft Matter Phys 2013;88:012721. https://doi.org/10.1103/physreve.88.012721.Suche in Google Scholar PubMed

109. Øien-Ødegaard, S, Shearer, GC, Wragg, DS, Lillerud, KP. Pitfalls in metal–organic framework crystallography: towards more accurate crystal structures. Chem Soc Rev 2017;46:4867–76. https://doi.org/10.1039/c6cs00533k.Suche in Google Scholar PubMed

110. Gandara, F, Bennett, TD. Crystallography of metal–organic frameworks. IUCrJ 2014;1:563–70. https://doi.org/10.1107/s2052252514020351.Suche in Google Scholar PubMed PubMed Central

111(a). Bloch, WM, Burgun, A, Coghlan, CJ, Lee, R, Coote, ML, Doonan, CJ, et al.. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nat Chem 2014;6:906–12. https://doi.org/10.1038/nchem.2045.Suche in Google Scholar PubMed

(b) Lee, S, Kapustin, EA, Yaghi, OM. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 2016;353:808–11. https://doi.org/10.1126/science.aaf9135.Suche in Google Scholar PubMed

(c) Hoshino, M, Khutia, A, Xing, H, Inokuma, Y, Fujita, M. The crystalline sponge method updated. IUCrJ 2016;3:139–51. https://doi.org/10.1107/s2052252515024379.Suche in Google Scholar PubMed PubMed Central

112(a). Lightfoot, P, Tremayne, M, Harris, KDM, Bruce, PG. Determination of a molecular crystal structure by X-ray powder diffraction on a conventional laboratory instrument. J Chem Soc Chem Commun 1992;14:1012. https://doi.org/10.1039/c39920001012.Suche in Google Scholar

(b) Harris, KDM, Tremayne, M, Lightfoot, P, Bruce, PG. Crystal structure determination from powder diffraction data by Monte Carlo methods. J Am Chem Soc 1994;116:3543. https://doi.org/10.1021/ja00087a047.Suche in Google Scholar

(c) Kariuki, BM, Zin, DMS, Tremayne, M, Harris, KDM. Crystal structure solution from powder X-ray diffraction Data:  the development of Monte Carlo methods to solve the crystal structure of the γ-phase of 3-chloro-trans-cinnamic acid. Chem Mater 1996;8:565. https://doi.org/10.1021/cm950452o.Suche in Google Scholar

113(a). Kuroda, R, Kitchin, SJ, Harris, KDM, Imai, Y, Tajima, N. Direct structure determination of a multicomponent molecular crystal prepared by a solid-state grinding procedure. J Am Chem Soc 2003;125:14658. https://doi.org/10.1021/ja030506s.Suche in Google Scholar PubMed

(b) Guo, F, Harris, KDM. Structural understanding of a molecular material that is accessed only by a solid-state desolvation Process:  the scope of modern powder X-ray diffraction techniques. J Am Chem Soc 2005;127:7314. https://doi.org/10.1021/ja050733p.Suche in Google Scholar PubMed

(c) Mora, AJ, Avila, EE, Delgado, GE, Fitch, AN, Brunelli, M. Temperature effects on the hydrogen-bond patterns in 4-piperidinecarboxylic acid. Acta Crystallogr, Sect B: Struct Sci 2005;61:96. https://doi.org/10.1107/s0108768104031738.Suche in Google Scholar PubMed

(d) Platteau, C, Lefebvre, J, Affouard, F, Willart, JF, Derollez, P, Mallet, F. Structure determination of the stable anhydrous phase of α-lactose from X-ray powder diffraction. Acta Crystallogr, Sect B: Struct Sci 2005;61:185. https://doi.org/10.1107/s0108768105000455.Suche in Google Scholar PubMed

114. Fujii, K, Garay, AL, Hill, J, Sbircea, E, Pan, Z, Xu, M, et al.. Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem Commun 2010;46:7572–4. https://doi.org/10.1039/c0cc02635b.Suche in Google Scholar PubMed

115. Pichon, A, James, SL. An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends. CrystEngComm 2008;10:1839. https://doi.org/10.1039/b810857a.Suche in Google Scholar

116. Shan, N, Toda, F, Jones, W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun 2002;20:2372. https://doi.org/10.1039/b207369m.Suche in Google Scholar PubMed

117. Sherman, DM. Quantum chemistry and classical simulations of metal complexes in aqueous solutions. Rev Mineral Geochem 2001;42:273–317. https://doi.org/10.2138/rmg.2001.42.8.Suche in Google Scholar

Received: 2024-01-17
Accepted: 2024-06-17
Published Online: 2024-08-02

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cppm-2024-0001/pdf
Button zum nach oben scrollen