Startseite Lebenswissenschaften Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water

  • Zhi-Qiang Hou , Rui-Zhe Zhang , Li-Gang Luo , Jing Yang , Chun-Ze Liu , Yuan-Yuan Wang EMAIL logo und Li-Yi Dai
Veröffentlicht/Copyright: 30. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The reaction of phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water was studied. The effects of various operating conditions, such as reaction temperature, reaction time, the mole ratio of phenylacetonitrile/water/methanol or ethanol on the product yield were systematically investigated. The optimal yield of methyl phenylacetate for phenylacetonitrile in supercritical methanol in a system containing a small volume of water was 70 % at 583 K and 2.5 h. The optimal yield of ethyl phenylacetate for phenylacetonitrile in supercritical ethanol with a small volume of water was 80 % at 583 K and 1.0 h. At the same time, a feasible mechanism was proposed for phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water.

References

Bicker, M., Kaiser, D., Ott, L., & Vogel, H. (2005). Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids, 36, 118-126. DOI: 10.1016/j.supflu.2005.04.004.10.1016/j.supflu.2005.04.004Suche in Google Scholar

Buttery, R. G., Ling, L. C., & Teranishi, R. (1980). Volatiles of corn tassels: possible corn ear worm attractants. Journal of Agricultural and Food Chemistry, 28, 771-774. DOI: 10.1021/jf60230a020.10.1021/jf60230a020Suche in Google Scholar

Caruso, M. M., Blaiszik, B. J., White, S. R., Sottos, N. R., & Moore, J. S. (2008). Full recovery of francture toughness using a nontoxic solvent-based self-healing system. Advanced Functional Materials, 18, 1898-1904. DOI: 10.1002/adfm.200800300.10.1002/adfm.200800300Suche in Google Scholar

Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33-38. DOI: 10.2478/s11696-011-0093-3.10.2478/s11696-011-0093-3Suche in Google Scholar

Demirba,s, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion and Management, 43, 2349-2356. DOI: 10.1016/s0196-8904(01)00170-4.10.1016/S0196-8904(01)00170-4Suche in Google Scholar

Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009). Green medium for the hydrolysis of 5-cyanovaleramide. Chemical Engineering & Technology, 32, 771-777. DOI: 10.1002/ceat.200800607.10.1002/ceat.200800607Suche in Google Scholar

Gasson, E. J., & Hadley, D. J. (1960). U.S. Patent No. 2,921,088. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Goto, M. (2009). Chemical recycling of plastics using sub- and supercritical fluids. Journal of Supercritical Fluids, 47, 500-507. DOI: 10.1016/j.supflu.2008.10.011.10.1016/j.supflu.2008.10.011Suche in Google Scholar

He, M. X., Feng, D. C., Zhu, F., & Cai, Z. T. (2004) Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water and alcohol effects. Journal of Physical Chemistry A, 108, 7702-7708. DOI: 10.1021/jp048374s.10.1021/jp048374sSuche in Google Scholar

Kamitanaka, T., Yamamoto, K., Matsuda, T., & Harada, T. (2008). Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols. Tetrahedron, 64, 5699-5702. DOI: 10.1016/j.tet.2008.04.029.10.1016/j.tet.2008.04.029Suche in Google Scholar

Karlsson, M. F., Birgersson, G., Prado, A. M. C., Bosa, F., Bengtsson, M., & Witzgall, P. (2009). Plant odor analysis of potato: Response of guatemalan moth to above- and belowground potato volatiles. Journal of Agricultural and Food Chemistry, 57, 5903-5909. DOI: 10.1021/jf803730h.10.1021/jf803730hSuche in Google Scholar PubMed

Kusdiana, D., & Saka, S. (2004). Effect of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91, 289-295. DOI: 10.1016/s0960-8524(03)00201-3.10.1016/S0960-8524(03)00201-3Suche in Google Scholar

Lee, G. R., & Crayston, J. A. (1996). Hydrolysis of acetonitrile in the presence of NbCl5. Polyhedron, 15, 1817-1821. DOI: 10.1016/0277-5387(95)00432-7.10.1016/0277-5387(95)00432-7Suche in Google Scholar

Madras, G., Kolluru, C., & Kumar, R. (2004). Synthesis of biodiesel in supercritical fluids. Fuel, 83, 2029-2033. DOI: 10.1016/j.fuel.2004.03.014.10.1016/j.fuel.2004.03.014Suche in Google Scholar

Minami, E. J., & Saka, S. (2006). Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85, 2479-2483. DOI: 10.1016/j.fuel.2006.04.017.10.1016/j.fuel.2006.04.017Suche in Google Scholar

Nomura, K., Ogura, H., & Imanishi, Y. (2002). Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. Journal of Molecular Catalysis A: Chemical, 178, 105-114. DOI: 10.1016/s1381-1169(01)00281-3.10.1016/S1381-1169(01)00281-3Suche in Google Scholar

Periasamy, M., Babu, N. K., & Jayakumar, K. N. (2003). A novel arylation of arylacetic acid esters using tertiary arylamines and TiCl4. Tetrahedron Letters, 44, 8939-8941. DOI: 10.1016/j.tetlet.2003.10.009.10.1016/j.tetlet.2003.10.009Suche in Google Scholar

Pinheiro, S., Lima, M. B.,Gon,calves, C. B. S. S., Pedraza, S. F., & de Farias, F. M. C. (2000). Control of diasteroselectivity in the aldolization of methyl phenylacetate. Tetrahedron Letters, 41, 4033-4034. DOI: 10.1016/s0040-4039(00)00582-7.10.1016/S0040-4039(00)00582-7Suche in Google Scholar

Reeve, W., Erikson, C. M., & Aluotto, P. F. (1979). A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides. Canadian Journal of Chemistry, 57, 2747-2754. DOI: 10.1139/v79-444.10.1139/v79-444Suche in Google Scholar

Schneekloth, J. S., Jr., Kim, J., & Sorensen, E. J. (2009). An interrupted Ugi reaction enables the preparation of substituted indoxyls and aminoindoles. Tetrahedron, 65, 3096-3101. DOI: 10.1016/j.tet.2008.08.055.10.1016/j.tet.2008.08.055Suche in Google Scholar PubMed PubMed Central

Škerget, S., Knez, Ž., & Knez-Hrnčič, M. (2011). Solubility of solids in sub- and supercritical fluids: a review. Journal of Chemical & Engineering Data, 56, 694-719. DOI: 10.1021/je1011373.10.1021/je1011373Suche in Google Scholar

Song, E. S., Lim, J. W., Lee, H. S., & Lee, Y. W. (2008). Transesterification of RBD palm oil using supercritical methanol. Journal of Supercritical Fluids, 44, 356-363. DOI: 10.1016/j.supflu.2007.09.010.10.1016/j.supflu.2007.09.010Suche in Google Scholar

Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza, F. C., Oliveira, J. V., Grompone, M. A., & Jachmanian, I. (2010). Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy, 35, 1976-1981. DOI: 10.1016/j.renene. 2010.01.027.Suche in Google Scholar

Trivedi, V., Bhomia, R., Mitchell, J. C., Coleman, N. J., Douroumis, D., & Snowden, M. J. (2013). Study of the effect of pressure on melting behavior of saturated fatty acids in liquid or supercritical carbon dioxide. Journal of Chemical & Engineering Data, 58, 1861-1866. DOI: 10.1021/je400260c.10.1021/je400260cSuche in Google Scholar

Received: 2014-4-14
Revised: 2014-7-9
Accepted: 2014-8-3
Published Online: 2014-12-30
Published in Print: 2015-3-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate
  2. Classification of wine distillates using multivariate statistical methods based on their direct GC-MS analysis
  3. Determination of cigarette papers moisture content by gas chromatography
  4. Flavonoids inhibiting glycation of bovine serum albumin: affinity–activity relationship
  5. Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas
  6. Physicochemical aspects of Trichosporon cutaneum CCY 30-5-10 adhesion and biofilm formation potential on cellophane
  7. Immobilisation of Aspergillus oryzae α-amylase and Aspergillus niger glucoamylase enzymes as cross-linked enzyme aggregates
  8. Dissolution kinetics of cerussite in an alternative leaching reagent for lead
  9. Preparation of quaternary pyridinium salts as possible proton conductors
  10. Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides
  11. Electrolytic preparation of nanosized Cu/Ni–Cu multilayered coatings
  12. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation
  13. Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent
  14. Practical synthesis of 2,3-dimethoxy-5-hydroxymethyl-6-methyl-1,4-benzoquinone
  15. Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water
Heruntergeladen am 14.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0047/html
Button zum nach oben scrollen