Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
-
Xinyu Hu
, Mingyong Cai
Abstract
Evaporation concentration of target analytes dissolved in a water droplet based on superhydrophobic surfaces could be able to break the limits for sensitive trace substance detection techniques (e.g. SERS) and it is promising in the fields such as food safety, eco-pollution, and bioscience. In the present study, polytetrafluoroethylene (PTFE) surfaces were processed by femtosecond laser and the corresponding processing parameter combinations were optimised to obtain surfaces with excellent superhydrophobicity. The optimal parameter combination is: laser power: 6.4 W; scanning spacing: 40 μm; scanning number: 1; and scanning path: 90 degree. For trapping and localising droplets, a tiny square area in the middle of the surface remained unprocessed for each sample. The evaporation and concentration processes of droplets on the optimised surfaces were performed and analyzed, respectively. It is shown that the droplets with targeted solute can successfully collect all solute into the designed trapping areas during evaporation process on our laser fabricated superhydrophobic surface, resulting in detection domains with high solute concentration for SERS characterisation. It is shown that the detected peak intensity of rhodamine 6G with a concentration of 10−6m in SERS characterisation can be obviously enhanced by one or two orders of magnitude on the laser fabricated surfaces compared with that of the unprocessed blank samples.
Acknowledgement
The authors acknowledge the support by the National Key R & D Program of China (Grant No. 2017YFB1104300), the National Natural Science Foundation of China (funder id: http://dx.doi.org/10.13039/501100001809, Grant No. 51575309, 51210009, 51905303) and China Postdoctoral Science Foundation (funder id: http://dx.doi.org/10.13039/501100002858, Grant No. 2018M641343).
References
[1] P. Fan, B. Bai, G. Jin, H. Zhang and M. Zhong, Appl. Surf. Sci. 457, 991–999 (2018).10.1016/j.apsusc.2018.07.017Suche in Google Scholar
[2] K. M. Tanvir Ahmmed, J. Montagut and Anne-Marie Kietzig, Can. J. Chem. Eng. 95, 1934–1942 (2017).10.1002/cjce.22850Suche in Google Scholar
[3] W. Liu, P. Fan, M. Yong, X. Luo, C. Chen, et al., Nanoscale 11, 8940 (2019).10.1039/C8NR10003ASuche in Google Scholar
[4] Y. Y. Yan, N. Gao and W. Barthlott, Adv Colloid Interface Sci. 169, 80–105 (2011).10.1016/j.cis.2011.08.005Suche in Google Scholar
[5] P. Papadopoulos, L, Mammen, X. Deng, D. Vollmer and H. Butt, Proc. Natl. Acad. Sci. U.S.A 110, 3254–3258 (2013).10.1073/pnas.1218673110Suche in Google Scholar
[6] H. Kusumaatmaja, M. L. Blow, A. Dupuis and J. M. Yeomans, EPL 81, 36003 (2008).10.1209/0295-5075/81/36003Suche in Google Scholar
[7] R. K. Annavarapu, S. Kim, M. Wang, A. J. Hart and H. Sojoudi, Sci. Rep. 9, 405 (2019).10.1038/s41598-018-37093-6Suche in Google Scholar
[8] R. G. Picknett and R. Bexon, J. Colloid Interface Sci. 61, 336–350 (1977).10.1016/0021-9797(77)90396-4Suche in Google Scholar
[9] G. Mchale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, Langmuir 21, 11053–11060 (2005).10.1021/la0518795Suche in Google Scholar PubMed
[10] H. Gelderblom, Á. G. Marin, H. Nair, A. van Houselt, L. Letterts, et al., Phys. Rev. E 83, 026306 (2011).10.1103/PhysRevE.83.026306Suche in Google Scholar PubMed
[11] S. A. Kulinich and M. Farzaneh, Appl. Surf. Sci. 255, 4056–4060 (2009).10.1016/j.apsusc.2008.10.109Suche in Google Scholar
[12] B. J. Zhang, K. J. Kim and C. Y. Lee, Exp. Therm. Fluid Sci. 96, 216–223 (2018).10.1016/j.expthermflusci.2018.02.035Suche in Google Scholar
[13] Y. Yamada and A. Horibe, Phys. Rev. E 97, 043113 (2018).10.1103/PhysRevE.97.043113Suche in Google Scholar PubMed
[14] S. Dash and S. V. Garimella, Langmuir 29, 10785–10795 (2013).10.1021/la402784cSuche in Google Scholar PubMed
[15] Y. Gao, N. Yang, T. You, C. Zhang and P. Yin, Sens. Actuators, B: Chem. 267, 129–135 (2018).10.1016/j.snb.2018.04.025Suche in Google Scholar
[16] F. Guo, H. Yang, J. Mao, J. Huang, X. Wang, et al., Compos. Commun. 10, 151–156 (2018).10.1016/j.coco.2018.09.008Suche in Google Scholar
[17] Y. Song, T. Xu, L-P. Xu and X. Zhang, Nanoscale 10, 20990–20994 (2018).10.1039/C8NR07348ASuche in Google Scholar
[18] Y. Zhang, C. Yang, B. Xue, Z. Peng, Z. Cao, et al., Sci. Rep. 8, 898 (2018).10.1038/s41598-018-19165-9Suche in Google Scholar PubMed PubMed Central
[19] Y. Wang, M. Wang, L. Shen, Y. Zhu, X. Sun, et al., Chin. Phys. B 27, 17801–017801 (2018).10.1088/1674-1056/27/1/017801Suche in Google Scholar
[20] G. C. Shi, M. L. Wang, Y. Y. Zhu, L. Shen, W. L. Ma, et al., Sci. Rep. 8, 6916 (2018).10.1038/s41598-018-25228-8Suche in Google Scholar PubMed PubMed Central
[21] S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, et al., Anal. Chem. 87, 6017–6024 (2015).10.1021/acs.analchem.5b00551Suche in Google Scholar PubMed
[22] F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, et al., Microelectron. Eng. 87, 798–801 (2010).10.1016/j.mee.2009.11.083Suche in Google Scholar
[23] F. Gentile, M. L. Coluccio, E. Rodanina, S. Santoreillo, D. Di Mascolo, et al., Microelectron. Eng. 111, 272–276 (2013).10.1016/j.mee.2013.01.036Suche in Google Scholar
[24] A. Milionis, D. Fragouli, L. Martiradonna, G. C. Anyfantis, P. Davide Cozzoli, et al., ACS Appl. Mater. Interfaces 6, 1036–1043 (2014).10.1021/am404565aSuche in Google Scholar PubMed
[25] W. Song, D. Psaltis and K. B. Crozier, Lab. Chip 14, 3907–3911 (2014).10.1039/C4LC00477ASuche in Google Scholar
[26] F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, et al., Nat. Photonics 5, 682–687 (2011).10.1038/nphoton.2011.222Suche in Google Scholar
[27] J. E. George, V. K. Unnikrishnan, D. Mathur, S. Chidangil and S. D. George, Sens. Actuators, B. Chem. 272, 485–493 (2018).10.1016/j.snb.2018.05.155Suche in Google Scholar
[28] F. Chu, S. Yan, J. Zheng, H. Zhang, K. Yu, et al., NRL 13, 244 (2018).10.1186/s11671-018-2658-3Suche in Google Scholar PubMed PubMed Central
[29] A. Zhizhchenko, A. Kuchmizhak, O. Vitrik, Y. Kulchin and S. Juodkazis, Nanoscale 10, 21414–21424 (2018).10.1039/C8NR06119JSuche in Google Scholar PubMed
[30] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, et al., Nature 389, 827–829 (1997).10.1038/39827Suche in Google Scholar
[31] E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, J. Phys. Chem. C 111, 13794–13803 (2007).10.1021/jp0687908Suche in Google Scholar
[32] Y. Fang and Y. Huang, Appl. Phys. Lett. 102, 153108 (2013).10.1063/1.4802267Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/aot-2019-0072).
©2020 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses