Abstract
Direct femtosecond (fs) laser surface structuring became a versatile way to generate surface structures on solid targets demonstrating a high degree of flexibility and controllability in creating different types of structures for many applications. This approach demonstrated an alteration in various properties of the surface, such as optical properties, wetting response, etc. This paper focuses on direct fs laser surface structuring using complex light beams with spatially variant distribution of the polarization and fluence, with emphasis on the results obtained by the authors by exploiting q-plate beam converters. Although striking scientific findings were achieved so far, direct fs laser processing with complex light fields is still a novel research field, and new exciting findings are likely to appear on its horizon.
Acknowledgments
We would like to thank R. Fittipaldi and A. Vecchione of the ‘Multifunctional Materials Synthesis and Analysis’ (MUSA) laboratory of CNR-SPIN and F. Cardano, L. Marrucci, D. Paparo, and A. Rubano of the ‘Physics of Structured Light And Matter and of their interaction’ (SLAM) group at the Department of Physics, University of Naples ‘Federico II’, for their contributions. R. Bruzzese is also acknowledged for the fruitful discussions.
References
[1] A. Y. Vorobyev and C. Guo, Laser Photonics Rev. 7, 385 (2013).10.1002/lpor.201200017Suche in Google Scholar
[2] J. Bonse, S. Hoehm, S. V. Kirner, A. Rosenfeld and J. Krueger, IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).10.1109/JSTQE.2016.2614183Suche in Google Scholar
[3] F. A. Müller, C. Kunz and S. Gräf, Materials (Basel). 9, 476 (2016).10.3390/ma9060476Suche in Google Scholar PubMed PubMed Central
[4] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, et al., Light Sci. Appl. 5, e16133 (2016).10.1038/lsa.2016.133Suche in Google Scholar PubMed PubMed Central
[5] M. Duocastella and C. B. Arnold, Laser Photon. Rev. 6, 607 (2012).10.1002/lpor.201100031Suche in Google Scholar
[6] R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, et al., Adv. Opt. Technol. 7, 165 (2018).10.1515/aot-2018-0009Suche in Google Scholar
[7] J. Secor, R. Alfano and S. Ashrafi, in ‘Complex Light’ (IOP Publishing, Bristol, UK, 2017).10.1088/978-0-7503-1371-1ch1Suche in Google Scholar
[8] F. Cardano and L. Marrucci, Nat. Photonics 9, 776 (2015).10.1038/nphoton.2015.232Suche in Google Scholar
[9] J. P. Torres and L. Torner, in ‘Twisted Photons: Applications of Light With Orbital Angular Momentum’ (Wiley-VCH Verlag GhbH & Co. KGaA, Weinheim, Germany, 2011).10.1002/9783527635368Suche in Google Scholar
[10] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, et al., J. Opt. 13, 064001 (2011).10.1088/2040-8978/13/6/064001Suche in Google Scholar
[11] Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).10.1364/AOP.1.000001Suche in Google Scholar
[12] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, et al., J. Opt. 19, 013001 (2017).10.1088/2040-8978/19/1/013001Suche in Google Scholar
[13] S. Pancharatnam, Proc. Indian Acad. Sci. – Sect. A 44, 398 (1956).10.1007/BF03046095Suche in Google Scholar
[14] J. N. Ross, Opt. Quantum Electron. 16, 455 (1984).10.1007/BF00619638Suche in Google Scholar
[15] F. D. M. Haldane, Phys. Rev. Lett. 59, 1788 (1987).10.1103/PhysRevLett.59.1788Suche in Google Scholar
[16] D. Pohl, Appl. Phys. Lett. 20, 266 (1972).10.1063/1.1654142Suche in Google Scholar
[17] J.-F. Bisson, J. Li, K. Ueda and Y. Senatsky, Opt. Express 14, 3304 (2006).10.1364/OE.14.003304Suche in Google Scholar
[18] T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, et al., Appl. Phys. Lett. 60, 1921 (1992).10.1063/1.107151Suche in Google Scholar
[19] C. Tamm and C. O. Weiss, Opt. Angular Momentum 7, 1034 (1990).10.1364/JOSAB.7.001034Suche in Google Scholar
[20] M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen and J. P. Woerdman, Opt. Commun. 96, 123 (1993).10.1016/0030-4018(93)90535-DSuche in Google Scholar
[21] V. Y. Bazhenov, M. V. Vasnetsov and M. S. Soskin, J. Expt. Theor. Phys. Lett. 52, 429 (1990).Suche in Google Scholar
[22] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen and J. P. Woerdman, Opt. Commun. 112, 321 (1994).10.1016/0030-4018(94)90638-6Suche in Google Scholar
[23] M. Beresna, M. Gecevičius and P. G. Kazansky, Opt. Mater. Express 1, 783 (2011).10.1364/OME.1.000783Suche in Google Scholar
[24] N. R. Heckenberg, R. Mcduff, C. P. Smith and A. G. White, in ‘Generation of Optical Phase Singularities by Computer-Generated Holograms’ (OSA, Washington, DC, United States 1992).10.1364/OL.17.000221Suche in Google Scholar
[25] L. Marrucci, C. Manzo and D. Paparo, Phys. Rev. Lett. 96, 163905 (Massachusetts Ave., N.W. Washington, D.C. 20036-1012 USA, 2006).10.1103/PhysRevLett.96.163905Suche in Google Scholar PubMed
[26] F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, et al., Appl. Opt. 51, C1 (2012).10.1364/AO.51.0000C1Suche in Google Scholar PubMed
[27] M. Huang, F. Zhao, Y. Cheng, N. Xu and Z. Xu, ACS Nano 3, 4062 (2009).10.1021/nn900654vSuche in Google Scholar PubMed
[28] G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis and C. Fotakis, Phys. Rev. B 86, 115316 (2012).10.1103/PhysRevB.86.115316Suche in Google Scholar
[29] H. Zhang, J.-P. Colombier, C. Li, N. Faure, G. Cheng, et al., Phys. Rev. B 92, 174109 (2015).10.1103/PhysRevB.92.174109Suche in Google Scholar
[30] T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet and M. Sentis, J. Appl. Phys. 114, 083104 (2013).10.1063/1.4818433Suche in Google Scholar
[31] J. Bonse, M. Munz and H. Sturm, J. Appl. Phys. 97, 013538 (2005).10.1063/1.1827919Suche in Google Scholar
[32] G. D. Tsibidis, C. Fotakis and E. Stratakis, Phys. Rev. B – Condens. Matter Mater. Phys. 92, 041405 (2015).10.1103/PhysRevB.92.041405Suche in Google Scholar
[33] G. D. Tsibidis, E. Skoulas, A. Papadopoulos and E. Stratakis, Phys. Rev. B 94, 081305 (2016).10.1103/PhysRevB.94.081305Suche in Google Scholar
[34] G. D. Tsibidis, A. Mimidis, E. Skoulas, S. V. Kirner, J. Krüger, et al., Appl. Phys. A 124, 27 (2018).10.1007/s00339-017-1443-ySuche in Google Scholar
[35] S. He, J. J. Nivas, A. Vecchione, M. Hu and S. Amoruso, Opt. Express 24, 3238 (2016).10.1364/OE.24.003238Suche in Google Scholar PubMed
[36] S. He, J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, et al., Appl. Surf. Sci. 353, 1214 (2015).10.1016/j.apsusc.2015.07.016Suche in Google Scholar
[37] J. J. J. Nivas, F. Gesuele, E. Allahyari, S. L. Oscurato, R. Fittipaldi, et al., Opt. Lett. 42, 2710 (2017).10.1364/OL.42.002710Suche in Google Scholar PubMed
[38] L. L. Ran, S. L. Qu and Z. Y. Guo, Chinese Phys. B 19, 034204 (2010).10.1088/1674-1056/19/3/034204Suche in Google Scholar
[39] C. Hnatovsky, V. G. Shvedov, W. Krolikowski and A. V. Rode, Opt. Lett. 35, 3417 (2010).10.1364/OL.35.003417Suche in Google Scholar PubMed
[40] W. C. Shen, C. W. Cheng, M. C. Yang, Y. Kozawa and S. Sato, J. Laser Micro Nanoeng. 5, 229 (2010).10.2961/jlmn.2010.03.0009Suche in Google Scholar
[41] C. Hnatovsky, V. Shvedov, W. Krolikowski and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).10.1103/PhysRevLett.106.123901Suche in Google Scholar PubMed
[42] C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode and W. Krolikowski, Opt. Lett. 37, 226 (2012).10.1364/OL.37.000226Suche in Google Scholar PubMed
[43] J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, et al., Opt. Express 18, 2144 (2010).10.1364/OE.18.002144Suche in Google Scholar PubMed
[44] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita and T. Omatsu, Nano Lett. 12, 3645 (2012).10.1021/nl301347jSuche in Google Scholar PubMed PubMed Central
[45] K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, et al., Phys. Rev. Lett. 110, 143603 (2013).10.1103/PhysRevLett.110.143603Suche in Google Scholar PubMed
[46] K. Lou, S.-X. Qian, X.-L. Wang, Y. Li, B. Gu, et al., Opt. Express 20, 120 (2012).10.1364/OE.20.000120Suche in Google Scholar PubMed
[47] O. J. Allegre, Y. Jin, W. Perrie, J. Ouyang, E. Fearon, et al., Opt. Express 21, 21198 (2013).10.1364/OE.21.021198Suche in Google Scholar PubMed
[48] Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, et al., Opt. Express 21, 25333 (2013).10.1364/OE.21.025333Suche in Google Scholar PubMed
[49] J. Ouyang, W. Perrie, O. J. Allegre, T. Heil, Y. Jin, et al., Opt. Express 23, 12562 (2015).10.1364/OE.23.012562Suche in Google Scholar PubMed
[50] G. D. Tsibidis, E. Skoulas and E. Stratakis, Opt. Lett. 40, 5172 (2015).10.1364/OL.40.005172Suche in Google Scholar PubMed
[51] M. Alameer, A. Jain, M. G. Rahimian, H. Larocque, P. B. Corkum, et al., Opt. Lett. 43, 5757 (2018).10.1364/OL.43.005757Suche in Google Scholar PubMed
[52] E. Skoulas, A. Manousaki, C. Fotakis and E. Stratakis, Sci. Rep. 7, 45114 (2017).10.1038/srep45114Suche in Google Scholar PubMed PubMed Central
[53] K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, et al., Appl. Phys. Lett. 104, 241604 (2014).10.1063/1.4884116Suche in Google Scholar
[54] K. K. Anoop, R. Fittipaldi, A. Rubano, X. Wang, D. Paparo, et al., J. Appl. Phys. 116, 113102 (2014).10.1063/1.4896068Suche in Google Scholar
[55] B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci and E. Santamato, Appl. Phys. Lett. 97, 241104 (2010).10.1063/1.3527083Suche in Google Scholar
[56] A. Rubano, F. Cardano, B. Piccirillo and L. Marrucci, J. Opt. Soc. Am. B 36, D70 (2019).10.1364/JOSAB.36.000D70Suche in Google Scholar
[57] A. D’Errico, M. Maffei, B. Piccirillo, C. de Lisio, F. Cardano, et al., Sci. Rep. 7, 40195 (2017).10.1038/srep40195Suche in Google Scholar PubMed PubMed Central
[58] J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, et al., Sci. Rep. 5, 17929 (2015).10.1038/srep17929Suche in Google Scholar PubMed PubMed Central
[59] E. Karimi, B. Piccirillo, L. Marrucci and E. Santamato, Opt. Lett. 34, 1225 (2009).10.1364/OL.34.001225Suche in Google Scholar
[60] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, et al., Opt. Express 24, 16390 (2016).10.1364/OE.24.016390Suche in Google Scholar PubMed
[61] O. Varlamova, M. Bounhalli and J. Reif, Appl. Surf. Sci. 278, 62 (2013).10.1016/j.apsusc.2012.10.140Suche in Google Scholar
[62] J. J. J. Nivas, E. Allahyari, F. Gesuele, P. Maddalena, R. Fittipaldi, et al., Appl. Phys. A 124, 198 (2018).10.1007/s00339-018-1621-6Suche in Google Scholar
[63] J. J. J. Nivas, E. Allahyari, F. Cardano, A. Rubano, R. Fittipaldi, et al., Sci. Rep. 8, 13613 (2018).10.1038/s41598-018-31768-wSuche in Google Scholar PubMed PubMed Central
[64] J. J. Nivas, K. K. Anoop, R. Bruzzese, R. Philip and S. Amoruso, Appl. Phys. Lett. 112, 121601 (2018).10.1063/1.5011134Suche in Google Scholar
[65] J. J. J. Nivas, S. He, Z. Song, A. Rubano, A. Vecchione, et al., Appl. Surf. Sci. 418, 565 (2017).10.1016/j.apsusc.2016.10.162Suche in Google Scholar
[66] A. A. Kuchmizhak, A. P. Porfirev, S. A. Syubaev, P. A. Danilov, A. A. Ionin, et al., Opt. Lett. 42, 2838 (2017).10.1364/OL.42.002838Suche in Google Scholar PubMed
[67] J. J. Nivas, F. Cardano, Z. Song, A. Rubano, R. Fittipaldi, et al., Sci. Rep. 7, 42142 (2017).10.1038/srep42142Suche in Google Scholar PubMed PubMed Central
[68] Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, et al., Appl. Phys. Lett. 110, 211602 (2017).10.1063/1.4984110Suche in Google Scholar
[69] J. J. J. Nivas, E. Allahyari, F. Cardano, A. Rubano, R. Fittipaldi, et al., Appl. Surf. Sci. 471, 1028 (2019).10.1016/j.apsusc.2018.12.091Suche in Google Scholar
©2020 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- Conference Notes
- Topical Issue: Laser Micro- and Nano-Material Processing – Part 1
- Editorial
- Laser micro- and nano-material processing – Part 1
- Review Articles
- Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications
- Laser interference ablation by ultrashort UV laser pulses via diffractive beam management
- Direct femtosecond laser surface structuring with complex light beams generated by q-plates
- Research Articles
- Effects of laser processing conditions on wettability and proliferation of Saos-2 cells on CoCrMo alloy surfaces
- Interference-based laser-induced micro-plasma ablation of glass
- Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration
- High-quality net shape geometries from additively manufactured parts using closed-loop controlled ablation with ultrashort laser pulses