Startseite Single pulse femtosecond laser ablation of silicon – a comparison between experimental and simulated two-dimensional ablation profiles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Single pulse femtosecond laser ablation of silicon – a comparison between experimental and simulated two-dimensional ablation profiles

  • Regina Moser , Matthias Domke , Jan Winter , Heinz P. Huber ORCID logo EMAIL logo und Gerd Marowsky
Veröffentlicht/Copyright: 17. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ultrashort laser pulses are widely used for the precise structuring of semiconductors like silicon (Si). We present here, for the first time, a comparative study of experimentally obtained and numerically simulated two-dimensional ablation profiles based on parameters of commercially relevant and widely used near-infrared and diode pumped femtosecond lasers. Single pulse laser ablation was studied at a center wavelength of 1040 nm and pulse duration of 380 fs (FWHM) in an irradiating fluence regime from 1 J/cm2 to 10 J/cm2. Process thresholds for material transport and removal were determined. Three regimes, scaling with the fluence, could be identified: low and middle fluence regimes and a hydrodynamic motion regime. By comparing the simulated and experimental ablation profiles, two conclusions can be drawn: At 2 J/cm2, the isothermal profile of 3800 K is in excellent agreement with the observed two-dimensional ablation. Thus exceeding a temperature of 3800 K can be accepted as a simplified ablation condition at that fluence. Furthermore, we observed a distinct deviation of the experimental from the simulated ablation profiles for irradiated fluences above 4 J/cm2. This points to hydrodynamic motion as an important contributing mechanism for laser ablation at higher fluences.

Acknowledgments

This work was partly funded by the Bundesministerium für Wirtschaft und Energie (BMWi) in the project MONOSCRIBE (grant no. 0325922A) and by the DFG in grant no. HU1893/2-1. Support by Spectra Physics Austria is further acknowledged for close collaboration and financial support of the Josef Ressel Centre for material processing with ultrashort pulsed lasers. The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged.

References

[1] M. C. Downer, R. L. Fork and C. V. Shank, J. Opt. Soc. Am. A Optics Image Sci. Vision. 2, 595–599 (1985).10.1364/JOSAA.2.000595Suche in Google Scholar

[2] C. V. Shank, Phys. Rev. Lett. 51, 900–902 (1983).10.1103/PhysRevLett.51.900Suche in Google Scholar

[3] C. V. Shank, R. Yen and C. Hirlimann, Phys. Rev. Lett. 50, 454–457 (1983).10.1103/PhysRevLett.50.454Suche in Google Scholar

[4] A. Cavalleri, K. Sokolowski-tinten, J. Bialkowski, M. Schreiner and D. Von Der Linde. J. Appl. Phys. 85, 3301 (1999).10.1063/1.369675Suche in Google Scholar

[5] K. Sokolowski-tinten, J. Bialkowski and D. Von Der Linde, Phys. Rev. B. 51, 14186–14198 (1995).10.1103/PhysRevB.51.14186Suche in Google Scholar

[6] H. M. Van Driel, Phys. Rev. B. 35, 8166 (1987).10.1103/PhysRevB.35.8166Suche in Google Scholar

[7] A. Rämer, O. Osmani and B. Rethfeld, J. Appl. Phys. 116, 53508 (2014).10.1063/1.4891633Suche in Google Scholar

[8] N. M. Bulgakova and A. V. Bulgakov, Appl. Phys. A. 73, 199–208 (2001).10.1007/s003390000686Suche in Google Scholar

[9] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tuennermann, Appl. Phys. A. 63, 109–115 (1997).10.1007/BF01567637Suche in Google Scholar

[10] C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben and A. Tuennermann, Appl. Surf. Sci. 109–110, 15–19 (1997).10.1016/S0169-4332(96)00613-7Suche in Google Scholar

[11] C. Momma, B. N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tuennermann, et al., Opt. Commun. 129, 134–142 (1996).10.1016/0030-4018(96)00250-7Suche in Google Scholar

[12] P. S. Banks, M. D. Feit, A. M. Rubenchik, B. C. Stuart and M. D. Perry, Appl. Phys. A. 69, S377–S380 (1999).10.1007/s003390051420Suche in Google Scholar

[13] X. Liu, D. Du and G. Mourou, IEEE J. Quantum Electron. 10, 1706–1716 (1997).10.1109/3.631270Suche in Google Scholar

[14] B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange and P.-E. Martin, Proc. SPIE. 8243 (2012).Suche in Google Scholar

[15] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., JOSA B 14, 2716–2722 (1997).10.1364/JOSAB.14.002716Suche in Google Scholar

[16] N. Bärsch, K. Körber, A. Ostendorf and K. H. Tönshoff, Appl. Phys. A. 77, 237–242 (2003).10.1007/s00339-003-2118-4Suche in Google Scholar

[17] P. Allenspacher, B. Hüttner and W. Riede, Proc. SPIE. 4932 (2003).10.1117/12.472053Suche in Google Scholar

[18] P.P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, et al., Phys. Rev. B. 58(5), 2387–2390 (1998).10.1103/PhysRevB.58.2387Suche in Google Scholar

[19] J. Bonse, S. Baudach, J. Krüger, W. Kautek and M. Lenzner, Appl. Phys. A. 74, 19–25 (2002).10.1007/s003390100893Suche in Google Scholar

[20] G. J. Lee, Y. P. Lee, H. Cheong, C. S. Yoon, C. H. Oh, et al., J. Korean Phys. Soc. 48, 1268–1272 (2006).Suche in Google Scholar

[21] G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis and C. Fotakis, Phys. Rev. B. 86, 115316 (2012).10.1103/PhysRevB.86.115316Suche in Google Scholar

[22] J. Bonse, A. Rosenfeld and J. Krüger, J. Appl. Phys. 106, 104910 (2009).10.1063/1.3261734Suche in Google Scholar

[23] J. Bonse and J. Krüger, J. Appl. Phys. 108, 34903 (2010).10.1063/1.3456501Suche in Google Scholar

[24] J. Bonse, M. Munz and H. Sturm, J. Appl. Phys. 97, 13538 (2005).10.1063/1.1827919Suche in Google Scholar

[25] Z. Guosheng, P. M. Fauchet and A. E. Siegman, Phys. Rev. B. 26, 5366 (1982).10.1103/PhysRevB.26.5366Suche in Google Scholar

[26] S.I. Anisimov, N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, et al., Appl. Phys. A. 92, 939–943 (2008).10.1007/s00339-008-4607-ySuche in Google Scholar

[27] S. I. Anisimov, B. L. Kapeliovich and T. L. Perelman, Soviet Phys. JETP. 39, 375 (1974).Suche in Google Scholar

[28] J. K. Chen, D. Y. Tzou and J. E. Beraun, Int. J. Heat Mass Transfer 48, 501–509 (2005).10.1016/j.ijheatmasstransfer.2004.09.015Suche in Google Scholar

[29] A. Kiselev, J. Roth and H. Trebin, High Performance Computing in Science and Engineering (Springer Heidelberg, 2016) pp. 189–202.10.1007/978-3-319-47066-5_14Suche in Google Scholar

[30] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, et al., JETP Lett. 77, 606–610 (2003).10.1134/1.1600815Suche in Google Scholar

[31] B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, et al., Phys. Procedia 12, 164–171 (2011).10.1016/j.phpro.2011.03.118Suche in Google Scholar

[32] B. Neuenschwander, G. F. Bucher, G. Hennig, C. Nussbaum, B. Joss, et al., Proc ICALEO, Anaheim, California (2010).Suche in Google Scholar

[33] M. Domke, G. Piredda, J. Zehetner and S. Stroj, J. Laser Micro Nanoeng. 11, 100 (2016).10.2961/jlmn.2016.01.0019Suche in Google Scholar

[34] J. M. Liu, Opt. Lett. 7, 196 (1982).10.1364/OL.7.000196Suche in Google Scholar

[35] J. F. Reintjes and J. C. Mcgroddy, Phys. Rev. Lett. 30, 901 (1973).10.1103/PhysRevLett.30.901Suche in Google Scholar

[36] Y. Gan and J. K. Chen. Appl. Phys. A. 105, 427–437 (2011).10.1007/s00339-011-6573-zSuche in Google Scholar

[37] E. D. Palik, in ‘Handbook of Optical Constants of Solids’. (Academic Press, Boston, 1985).Suche in Google Scholar

[38] H.S. Sim, S. H. Lee and J. S. Lee, J. Mech. Sci. Technol. 21, 1847–1854 (2007).10.1007/BF03177440Suche in Google Scholar

[39] C. P. Grigoropoulos, R. H. Buckholz and G. A. Domoto, J. Appl. Phys. 60, 2304–2309 (1986).10.1063/1.337139Suche in Google Scholar

Received: 2018-02-13
Accepted: 2018-04-13
Published Online: 2018-05-17
Published in Print: 2018-08-28

©2018 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2018-0013/html
Button zum nach oben scrollen