Abstract
Fabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.
Acknowledgments
The work of A.F.L. was supported by the German Research Foundation (DFG), Excellence Initiative by the German federal and state governments to promote top-level research at German universities (Grant no. F-003661-553-41A-1132104). A.F.L. also acknowledges the Bundesministerium für Bildung und Forschung (BMBF) for financial support (Verbundförderprojekt ‘Laser Interference High Speed Surface Functionalization’, FKZ 13N13113). This work was also partially supported by the Fraunhofer- Gesellschaft under Grant No. Attract 692174.
References
[1] E. Favret and N. Fuentes, in ‘Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications’, (World Scientific Publishing Co. Pte. Ltd., Singapore, 2009).10.1142/7109Suche in Google Scholar
[2] A. F. Lasagni, T. Kunze, M. Bieda, D. Günther, A. Gärtner, et al., Proc. SPIE 9735, 973515 (2016).10.1117/12.2214948Suche in Google Scholar
[3] A. F. Lasagni and B. S. Menéndez-Ormaza, Adv. Eng. Mater. 12, 54–60 (2010).10.1002/adem.200900221Suche in Google Scholar
[4] J. H. Seo, J. H. Park, Z. Ma, J. Choi and B.-K. Ju, J. Nanosci. Nanotechnol. 14, 1521–1532 (2014).10.1166/jnn.2014.9199Suche in Google Scholar
[5] A. Lasagni and F. Mücklich, Appl. Surf. Sci. 247, 32–37 (2005).10.1016/j.apsusc.2005.01.063Suche in Google Scholar
[6] A. Lasagni and F. Mücklich, Applied Surf. Sci. 240, 214–221 (2005).10.1016/j.apsusc.2004.06.143Suche in Google Scholar
[7] F. Yu, F. Muecklich, P. Li, H. Shen, S. Mathur, et al., Biomacromolecules 6, 1160–1167 (2005).10.1021/bm049324wSuche in Google Scholar
[8] A. Rosenkranz, L. Reinert, C. Gachot and F. Mücklich, Wear 318, 49–61 (2014).10.1016/j.wear.2014.06.016Suche in Google Scholar
[9] A. Aktag, S. Michalski, L. Yue, R. D. Kirby and S. H. Liou, J. Appl. Phys. 99, 093901 (2006).10.1063/1.2191747Suche in Google Scholar
[10] L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, et al., Carbon 50, 1667–1673 (2012).10.1016/j.carbon.2011.12.011Suche in Google Scholar
[11] C. Nebel, S. Christiansen, H. P. Strunk, B. Dahlheimer, U. Karrer, et al., Phys. Status Solidi (A) 166, 667–674 (1998).10.1002/(SICI)1521-396X(199804)166:2<667::AID-PSSA667>3.0.CO;2-YSuche in Google Scholar
[12] G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, et al., J. Non Cryst. Solids 227, 921–924 (1998).10.1016/S0022-3093(98)00213-0Suche in Google Scholar
[13] M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann and S. Kátai, Phys. Status Solidi (A) 166, 651–657 (1998).10.1002/(SICI)1521-396X(199804)166:2<651::AID-PSSA651>3.0.CO;2-PSuche in Google Scholar
[14] F. Muecklich, A. F. Lasagni, C. Daniel, Intermet. 13, 437–442 (2005).10.1016/j.intermet.2004.07.005Suche in Google Scholar
[15] A. F. Lasagni, F. Muecklich, M. R. Nejati and R. Clasen, Adv. Eng. Mater. 8, 580–584 (2006).10.1002/adem.200500261Suche in Google Scholar
[16] M. Bieda, C. Schmädicke, T. Roch and A. F. Lasagni, Adv. Eng. Mater. 17, 102–108 (2015).10.1002/adem.201400007Suche in Google Scholar
[17] A. F. Lasagni, C. Gachot, K. E. Trinh, M. Hans, A. Rosenkranz, et al., Proc. of SPIE 10092, 1009211-1-11 (2017).10.1117/12.2252595Suche in Google Scholar
[18] M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y. K. Verevkin, et al., Appl. Surf. Sci. 255, 5537–5541 (2009).10.1016/j.apsusc.2008.07.201Suche in Google Scholar
[19] A. Rodriguez, M. Echeverría, M. Ellman, N. Perez, Y. K. Verevkin, et al., Microelectron. Eng. 86, 937–940 (2009).10.1016/j.mee.2008.12.043Suche in Google Scholar
[20] Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, et al., J. Alloys Compd. 449, 261–264 (2008).10.1016/j.jallcom.2006.02.115Suche in Google Scholar
[21] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, Nature 404, 53 (2000).10.1038/35003523Suche in Google Scholar
[22] A. D. Campo and E. Arzt, Chem. Rev. 108, 911 (2008).10.1021/cr050018ySuche in Google Scholar
[23] K. Ogai, Y. Kimura, R. Shimizu, J. Fujita and S. Matsui, Appl. Phys. Lett. 66, 1560 (1995).10.1063/1.113646Suche in Google Scholar
[24] S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi and M. Ichikawa, Appl. Phys. Lett. 66, 2754 (1995).10.1063/1.113698Suche in Google Scholar
[25] L. Cheng, R. Lu and H. Lipson, Laser Photon. Rev. 4, 568–580 (2009).10.1002/lpor.200810061Suche in Google Scholar
[26] H. van Wolferen and L. Abelmann, in ‘Lithography, Principles, Processes and Materials’, (Nova Science Publishers Inc, New York, 2011), ISBN: 978-1-61761-837-6.Suche in Google Scholar
[27] J. Choi, M. H. Chung, K. Y. Dong, E. M. Park, D. J. Ham, et al., J. Nanosci. Nanotechnol. 11, 778 (2011).10.1166/jnn.2011.3281Suche in Google Scholar PubMed
[28] M. Hong, L. S. Tan, B. Lukyanchuk, L. Shi and T. Chong, in SPIE News room. (2016). doi: 10.1117/2.1200905.1594.10.1117/2.1200905.1594Suche in Google Scholar
[29] A. F. Lasagni, D. Yuan, P. Shao and S. Das, Adv. Eng. Mater. 11, B20–B24 (2009).10.1002/adem.200800295Suche in Google Scholar
[30] A. Gombert, B. Bläsi, C. Bühler, P. Nitz, J. Mick, et al., Opt. Eng. 43, 2525–2533 (2004).10.1117/1.1803552Suche in Google Scholar
[31] C. Demuth, M. Bieda, A. Lasagni, A. Mahrle, A. Wetzig, et al., J. Mater. Process. Technol. 212, 689–699 (2012).10.1016/j.jmatprotec.2011.10.023Suche in Google Scholar
[32] M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, et al., Adv. Eng. Mater. 10, 554–558 (2008).10.1002/adem.200700321Suche in Google Scholar
[33] B. Voisiat, M. Gedvilas, S. Indrišiunas and G. Raciukaitis, Phys. Procedia 12, 116–124 (2011).10.1016/j.phpro.2011.03.113Suche in Google Scholar
[34] A. Lasagni and F. Lasagni, in ‘New Trends for Two and Three Dimensional Structures, Advanced Structured Materials Series’, (Springer Verlag, Berlin-Heidelberg, 2011).Suche in Google Scholar
[35] A. A. Maznev, T. F. Crimmins and K. A. Nelson, Opt. Lett. 23, 1378–1380 (1998).10.1364/OL.23.001378Suche in Google Scholar PubMed
[36] A. Lasagni, P. Shao, J. L. Hendricks, C. M. Shaw, D. Yuan, et al., Appl. Surf. Sci. 256, 1708–1713 (2010).10.1016/j.apsusc.2009.09.099Suche in Google Scholar
[37] W. Barthlott and C. Neinhuis, Planta 202, 1 (1997).10.1007/s004250050096Suche in Google Scholar
[38] J. Nickerl, M. Tsurkan, R. Hensel, C. Neinhuis and C. Werner, J. R. Soc. Interface 11, 20140619 (2014).10.1098/rsif.2014.0619Suche in Google Scholar PubMed PubMed Central
[39] Y. Nakata, Adv. Opt. Technol. 5, 29–38 (2015).Suche in Google Scholar
[40] A. F. Lasagni and E. Beyer, in ‘Laser Surface Engineering’, 1st ed., Ed. By Lawrence and Waugh (Woodhead Publishing, Cambridge), ISBN 978-17824-2074-3.Suche in Google Scholar
[41] S. Kuiper, H. van Wolferen, C. van Rijn, W. Nijdam, G. Krijnen, et al., J. Micromech. Microeng. 11, 33–37 (2001).10.1088/0960-1317/11/1/306Suche in Google Scholar
[42] V. Lang, T. Roch and A. F. Lasagni, Adv. Eng. Mater. 18, 1342–1348 (2016).10.1002/adem.201600173Suche in Google Scholar
[43] M. Bieda, M. Siebold and A. F. Lasagni, Appl. Surf. Sci. 387, 175–182 (2016).10.1016/j.apsusc.2016.06.100Suche in Google Scholar
[44] N. Unno and J. Taniguchi, Microelectron. Eng. 88, 2149 (2011).10.1016/j.mee.2011.02.006Suche in Google Scholar
[45] H. Schift, J. Vac. Sci. Technol. B 26, 458 (2008).10.1116/1.2890972Suche in Google Scholar
[46] J. Taniguchi and M. Aratani, J. Vac. Sci. Technol. 27, 2841 (2009).10.1116/1.3237141Suche in Google Scholar
[47] A. F. Lasagni, Proc. of 1. OptecNet Jahrestagung, OpTech-Net e.V., Duisburg (2017).Suche in Google Scholar
[48] H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, et al., Nat. Photonics 6, 617 (2012).10.1038/nphoton.2012.160Suche in Google Scholar
[49] H. Yang, D. Zhao, J.-H. Seo, S. Chuwongin, S. Kim, et al., IEEE Photonics Technol. Lett. 24, 476 (2012).10.1109/LPT.2011.2181351Suche in Google Scholar
[50] K. Hadobás, S. Kirsch, A. Carl, M. Acet and E. F. Wassermann, Nanotechnology 11, 161 (2000).10.1088/0957-4484/11/3/304Suche in Google Scholar
[51] H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim and K. D. Lee, Opt. Express 15, 15457 (2007).10.1364/OE.15.015457Suche in Google Scholar
[52] R. W. Sabnis, Displays 20, 119 (1999).10.1016/S0141-9382(99)00013-XSuche in Google Scholar
[53] J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele and V. Schmidt, Nanotechnology 21, 095302 (2010).10.1088/0957-4484/21/9/095302Suche in Google Scholar PubMed
[54] C. Gachot, A. Rosenkranz, L. Reinert, E. Ramos-Moore, N. Souza, et al., Tribol. Lett. 49, 193–202 (2013).10.1007/s11249-012-0057-ySuche in Google Scholar
[55] A. Rosenkranz, T. Heib, C. Gachot and F. Muecklich, Wear 334, 1–12 (2015).10.1016/j.wear.2015.04.006Suche in Google Scholar
[56] K. E. Trinh, F. Muecklich and E. Ramos-Moore, in ‘Proc. 27th Int. Conf. Electr. Contacts’, pp. 243–248 (2014).Suche in Google Scholar
[57] A. F. Lasagni and D. Guenther, in ‘Anwenderforum Funktionale Implantate und Implantatoberflächen’, (2015).Suche in Google Scholar
[58] A. Rosenkranz, M. Hans, C. Gachot, A. Thome, S. Bonk, et al., Lubricants 4, 2 (2016).10.3390/lubricants4010002Suche in Google Scholar
©2017 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Patterning roadmap: 2017 prospects
- Community
- Conference Notes
- News from the European Optical Society (EOS)
- Topical issue: Optical Nanostructuring
- Editorial
- Next-generation lithography – an outlook on EUV projection and nanoimprint
- Tutorial
- Photoresists in extreme ultraviolet lithography (EUVL)
- Review Articles
- Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling
- Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography
- EUV mask defectivity – a process of increasing control toward HVM
- Development and performance of EUV pellicles
- A review of nanoimprint lithography for high-volume semiconductor device manufacturing
- Large area nanoimprint by substrate conformal imprint lithography (SCIL)
- Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns
- Research Articles
- A full-process chain assessment for nanoimprint technology on 200-mm industrial platform
- Challenges of anamorphic high-NA lithography and mask making
- Research Article
- Chip bonding of low-melting eutectic alloys by transmitted laser radiation
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Patterning roadmap: 2017 prospects
- Community
- Conference Notes
- News from the European Optical Society (EOS)
- Topical issue: Optical Nanostructuring
- Editorial
- Next-generation lithography – an outlook on EUV projection and nanoimprint
- Tutorial
- Photoresists in extreme ultraviolet lithography (EUVL)
- Review Articles
- Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling
- Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography
- EUV mask defectivity – a process of increasing control toward HVM
- Development and performance of EUV pellicles
- A review of nanoimprint lithography for high-volume semiconductor device manufacturing
- Large area nanoimprint by substrate conformal imprint lithography (SCIL)
- Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns
- Research Articles
- A full-process chain assessment for nanoimprint technology on 200-mm industrial platform
- Challenges of anamorphic high-NA lithography and mask making
- Research Article
- Chip bonding of low-melting eutectic alloys by transmitted laser radiation