Startseite The partition of PG(2, q3) arising from an order 3 planar collineation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The partition of PG(2, q3) arising from an order 3 planar collineation

  • S. G. Barwick , Alice M. W. Hui EMAIL logo und Wen-Ai Jackson
Veröffentlicht/Copyright: 19. Juli 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let ϕ be a collineation of order 3 acting on PG(2, q3) whose fixed points are exactly an 𝔽q-plane P2,q. Let T be a point whose orbit under ϕ is a triangle and let ST be the subgroup of PGL(3, q3) that fixes setwise the 𝔽q-plane P2,q and fixes setwise the line TϕTϕ2 The point orbits of ST form a partition of the points of PG(2, q3) and consist of: the singletons T,Tϕ,Tϕ2; scattered linear sets on the sides of the triangle TTϕTϕ2; and 𝔽q-planes. This article studies the structure of this partition, looking at maps that permute elements of the partition. The motivation in studying this partition lies in its application to the construction of the Figueroa projective planes, and the article concludes with a characterisation in this setting.

MSC 2010: 51E15; 51E20

Funding statement: A.M. W. Hui acknowledges the support of National Natural Science Foundation of China (Grant No. 12071041).

  1. Communicated by: J. Bamberg

References

[1] R. D. Baker, J. M. N. Brown, G. L. Ebert, J. C. Fisher, Projective bundles. Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 329–336. MR1317131 Zbl 0803.5100910.36045/bbms/1103408578Suche in Google Scholar

[2] S. G. Barwick, A. M. W. Hui, W.-A. Jackson, A geometric description of the Figueroa plane. Des. Codes Cryptogr. 91 (2023), 1581–1593. MR4578154 Zbl 1520.5100210.1007/s10623-022-01158-5Suche in Google Scholar

[3] S. G. Barwick, W.-A. Jackson, Exterior splashes and linear sets of rank 3. Discrete Math. 339 (2016), 1613–1623. MR3475577 Zbl 1338.5100710.1016/j.disc.2015.12.018Suche in Google Scholar

[4] L. M. Batten, P. M. Johnson, The collineation groups of Figueroa planes. Canad. Math. Bull. 36 (1993), 390–397. MR1245311 Zbl 0803.5100210.4153/CMB-1993-053-0Suche in Google Scholar

[5] U. Dempwolff, PSL(3, q) on projective planes of order q3 Geom. Dedicata 18 (1985), 101–112. MR787308 Zbl 0563.5100810.1007/BF00221208Suche in Google Scholar

[6] T. Grundhöfer, A synthetic construction of the Figueroa planes. J. Geom. 26 (1986), 191–201. MR850165 Zbl 0595.5101010.1007/BF01227843Suche in Google Scholar

[7] N. L. Johnson, Planes and processes. Discrete Math. 309 (2009), 430–461. MR2473092 Zbl 1169.5101210.1016/j.disc.2007.12.031Suche in Google Scholar

[8] M. Lavrauw, G. Van de Voorde, On linear sets on a projective line. Des. Codes Cryptogr. 56 (2010), 89–104. MR2658923 Zbl 1204.5101310.1007/s10623-010-9393-9Suche in Google Scholar

[9] G. Lunardon, G. Marino, O. Polverino, R. Trombetti, Maximum scattered linear sets of pseudoregulus type and the Segre variety Snn J. Algebraic Combin. 39 (2014), 807–831. MR3199027 Zbl 1295.5101110.1007/s10801-013-0468-3Suche in Google Scholar

[10] G. Lunardon, O. Polverino, Translation ovoids of orthogonal polar spaces. Forum Math. 16 (2004), 663–669. MR2096680 Zbl 1072.5101010.1515/form.2004.029Suche in Google Scholar

[11] J. M. Nowlin Brown, Some partitions in Figueroa planes. Note Mat. 29 (2009), 33–43. MR2942757 Zbl 1252.51005Suche in Google Scholar

[12] F. A. Sherk, The geometry of GF(q3 Canad. J. Math. 38 (1986), 672–696. MR845672 Zbl 0589.5102210.4153/CJM-1986-035-2Suche in Google Scholar

Received: 2024-07-04
Published Online: 2025-07-19
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0016/html
Button zum nach oben scrollen