Startseite Functional inequalities and applications to doubly nonlinear diffusion equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional inequalities and applications to doubly nonlinear diffusion equations

  • Iwona Chlebicka ORCID logo EMAIL logo und Nikita Simonov ORCID logo
Veröffentlicht/Copyright: 11. November 2022

Abstract

We study weighted inequalities of Hardy and Hardy–Poincaré type and find necessary and sufficient conditions on the weights so that the considered inequalities hold. Examples with the optimal constants are shown. Such inequalities are then used to quantify the convergence rate of solutions to doubly nonlinear fast diffusion equation towards the Barenblatt profile.

MSC 2010: 35K57; 26D15; 35B44

Communicated by Juha Kinnunen


Funding statement: Nikita Simonov was partially supported by the Spanish Ministry of Science and Innovation, through the FPI-grant BES-2015-072962, associated to the project MTM2014-52240-P (Ministry of Science and Innovation, Spain), by the project MTM2017-85757-P (Ministry of Science and Innovation, Spain), by the E.U. H2020 MSCA programme, grant agreement 777822, by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR), and by the DIM Math-Innov of the Region Île-de-France.

Acknowledgements

A part of this project was carried out in Univesidad Autónoma de Madrid, when Iwona Chlebicka was visiting Matteo Bonforte. Both authors are grateful to him for guidance, patience, and invaluable help. Additionally, Iwona Chlebicka would like to thank Michał Strzelecki for insightful discussions and Błażej Miasojedow for essential help with computations. The authors would like to express their gratitude for reviewers who provided deep comments that substantially helped the presentation of the paper.

References

[1] M. Agueh, Asymptotic behavior for doubly degenerate parabolic equations, C. R. Math. Acad. Sci. Paris 337 (2003), no. 5, 331–336. 10.1016/S1631-073X(03)00352-2Suche in Google Scholar

[2] M. Agueh, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Adv. Differential Equations 10 (2005), no. 3, 309–360. 10.57262/ade/1355867881Suche in Google Scholar

[3] M. Agueh, Rates of decay to equilibria for p-Laplacian type equations, Nonlinear Anal. 68 (2008), no. 7, 1909–1927. 10.1016/j.na.2007.01.043Suche in Google Scholar

[4] M. Agueh, A. Blanchet and J. A. Carrillo, Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, J. Evol. Equ. 10 (2010), no. 1, 59–84. 10.1007/s00028-009-0040-8Suche in Google Scholar

[5] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge University, Cambridge, 1999. 10.1017/CBO9781107325937Suche in Google Scholar

[6] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panor. Synthéses 10, Société Mathématique de France, Paris, 2000. Suche in Google Scholar

[7] D. G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Ration. Mech. Anal. 37 (1970), 1–10. 10.1007/BF00249496Suche in Google Scholar

[8] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), no. 1, 121–139. 10.1090/S0002-9947-1984-0742415-3Suche in Google Scholar

[9] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved L p Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2169–2196. 10.1090/S0002-9947-03-03389-0Suche in Google Scholar

[10] F. Barthe and C. Roberto, Modified logarithmic Sobolev inequalities on , Potential Anal. 29 (2008), no. 2, 167–193. 10.1007/s11118-008-9093-5Suche in Google Scholar

[11] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J.-L. Vázquez, Hardy–Poincaré inequalities and applications to nonlinear diffusions, C. R. Math. Acad. Sci. Paris 344 (2007), no. 7, 431–436. 10.1016/j.crma.2007.01.011Suche in Google Scholar

[12] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191 (2009), no. 2, 347–385. 10.1007/s00205-008-0155-zSuche in Google Scholar

[13] S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163 (1999), no. 1, 1–28. 10.1006/jfan.1998.3326Suche in Google Scholar

[14] V. Bögelein, F. Duzaar, P. Marcellini and C. Scheven, Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal. 229 (2018), no. 2, 503–545. 10.1007/s00205-018-1221-9Suche in Google Scholar

[15] M. Bonforte, J. Dolbeault, B. Nazaret and N. Simonov, Stability in Gagliardo–Nirenberg–Sobolev inequalities: Flows, regularity and the entropy method, preprint (2020), https://arxiv.org/abs/2007.03674; to appear in Mem. Amer. Math. Soc. Suche in Google Scholar

[16] M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics: Entropy method and flow on a Riemann manifold, Arch. Ration. Mech. Anal. 196 (2010), no. 2, 631–680. 10.1007/s00205-009-0252-7Suche in Google Scholar

[17] M. Bonforte and N. Simonov, Fine properties of solutions to the cauchy problem for a fast diffusion equation with Caffarelli–Kohn–Nirenberg weights, preprint (2020), https://arxiv.org/abs/2002.09967. Suche in Google Scholar

[18] M. Bonforte, N. Simonov and D. Stan, The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, J. Math. Pures Appl. (9) 163 (2022), 83–131. 10.1016/j.matpur.2022.05.002Suche in Google Scholar

[19] J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133 (2001), no. 1, 1–82. 10.1007/s006050170032Suche in Google Scholar

[20] J. A. Carrillo, C. Lederman, P. A. Markowich and G. Toscani, Poincaré inequalities for linearizations of very fast diffusion equations, Nonlinearity 15 (2002), no. 3, 565–580. 10.1088/0951-7715/15/3/303Suche in Google Scholar

[21] J. A. Carrillo and G. Toscani, Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000), no. 1, 113–142. 10.1512/iumj.2000.49.1756Suche in Google Scholar

[22] J. A. Carrillo and J. L. Vázquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations 28 (2003), no. 5–6, 1023–1056. 10.1081/PDE-120021185Suche in Google Scholar

[23] I. Chavel, Eigenvalues in Riemannian Geometry, Pure Appl. Math. 115, Academic Press, Orlando, 1984. Suche in Google Scholar

[24] I. Chlebicka and A. Zatorska-Goldstein, Existence to nonlinear parabolic problems with unbounded weights, J. Evol. Equ. 19 (2019), no. 1, 1–19. 10.1007/s00028-018-0465-zSuche in Google Scholar

[25] S.-K. Chua, On weighted Sobolev interpolation inequalities, Proc. Amer. Math. Soc. 121 (1994), no. 2, 441–449. 10.1090/S0002-9939-1994-1221721-4Suche in Google Scholar

[26] L. D’Ambrosio, Hardy inequalities related to Grushin type operators, Proc. Amer. Math. Soc. 132 (2004), no. 3, 725–734. 10.1090/S0002-9939-03-07232-0Suche in Google Scholar

[27] L. D’Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 3, 451–486. 10.2422/2036-2145.2005.3.04Suche in Google Scholar

[28] L. D’Ambrosio and S. Dipierro, Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 3, 449–475. 10.1016/j.anihpc.2013.04.004Suche in Google Scholar

[29] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9) 81 (2002), no. 9, 847–875. 10.1016/S0021-7824(02)01266-7Suche in Google Scholar

[30] M. Del Pino and J. Dolbeault, Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian, C. R. Math. Acad. Sci. Paris 334 (2002), no. 5, 365–370. 10.1016/S1631-073X(02)02225-2Suche in Google Scholar

[31] M. Del Pino and J. Dolbeault, Asymptotic behavior of nonlinear diffusions, Math. Res. Lett. 10 (2003), no. 4, 551–557. 10.4310/MRL.2003.v10.n4.a13Suche in Google Scholar

[32] J. Denzler, H. Koch and R. J. McCann, Higher-order time asymptotics of fast diffusion in Euclidean space: A dynamical systems approach, Mem. Amer. Math. Soc. 234 (2015), no. 1101, 1–81. 10.1090/memo/1101Suche in Google Scholar

[33] J. Denzler and R. J. McCann, Fast diffusion to self-similarity: Complete spectrum, long-time asymptotics, and numerology, Arch. Ration. Mech. Anal. 175 (2005), no. 3, 301–342. 10.1007/s00205-004-0336-3Suche in Google Scholar

[34] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer, New York, 1993. 10.1007/978-1-4612-0895-2Suche in Google Scholar

[35] E. DiBenedetto, U. Gianazza and V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations, Springer Monogr. Math., Springer, New York, 2012. 10.1007/978-1-4614-1584-8Suche in Google Scholar

[36] J. Dolbeault, Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results, Milan J. Math. 89 (2021), no. 2, 355–386. 10.1007/s00032-021-00341-ySuche in Google Scholar

[37] J. Dolbeault and G. Toscani, Fast diffusion equations: Matching large time asymptotics by relative entropy methods, Kinet. Relat. Models 4 (2011), no. 3, 701–716. 10.3934/krm.2011.4.701Suche in Google Scholar

[38] J. Dolbeault and G. Toscani, Improved interpolation inequalities, relative entropy and fast diffusion equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 5, 917–934. 10.1016/j.anihpc.2012.12.004Suche in Google Scholar

[39] F. G. Düzgün, S. Mosconi and V. Vespri, Harnack and pointwise estimates for degenerate or singular parabolic equations, Contemporary Research in Elliptic PDEs and Related Topics, Springer INdAM Ser. 33, Springer, Cham (2019), 301–368. 10.1007/978-3-030-18921-1_8Suche in Google Scholar

[40] S. Fornaro, E. Henriques and V. Vespri, Regularity results for a class of doubly nonlinear very singular parabolic equations, Nonlinear Anal. 205 (2021), Paper No. 112213. 10.1016/j.na.2020.112213Suche in Google Scholar

[41] S. Fornaro, M. Sosio and V. Vespri, Harnack type inequalities for some doubly nonlinear singular parabolic equations, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5909–5926. 10.3934/dcds.2015.35.5909Suche in Google Scholar

[42] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), no. 2, 441–476. 10.1006/jdeq.1997.3375Suche in Google Scholar

[43] N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy–Rellich inequalities, Math. Ann. 349 (2011), no. 1, 1–57. 10.1007/s00208-010-0510-xSuche in Google Scholar

[44] N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Math. Surveys Monogr. 187, American Mathematical Society, Providence, 2013. 10.1090/surv/187Suche in Google Scholar

[45] C. E. Gutiérrez and R. L. Wheeden, Sobolev interpolation inequalities with weights, Trans. Amer. Math. Soc. 323 (1991), no. 1, 263–281. 10.1090/S0002-9947-1991-0994166-1Suche in Google Scholar

[46] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lect. Notes Math. 5, American Mathematical Society, Providence, 1999. 10.1090/cln/005Suche in Google Scholar

[47] X. Huang and D. Ye, First order Hardy inequalities revisited, preprint (2021), https://arxiv.org/abs/2109.05471. Suche in Google Scholar

[48] K. Hutter, Mathematical foundation of ice sheet and ice shelf dynamics. A physicist’s view, Free Boundary Problems: Theory and Applications (Crete 1997), Chapman & Hall/CRC Res. Notes Math. 409, Chapman & Hall/CRC, Boca Raton (1999), 192–203. 10.1201/9780203755518-16Suche in Google Scholar

[49] K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation, SIAM J. Math. Anal. 27 (1996), no. 5, 1235–1260. 10.1137/S0036141094270370Suche in Google Scholar

[50] A. V. Ivanov, P. Z. Mkrtychyan and V. Yaeger, Existence and uniqueness of a regular solution of the first initial-boundary value problem for a class of doubly nonlinear parabolic equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 213 (1994), no. 25, 48–65, 224–225. Suche in Google Scholar

[51] A. Kałamajska and K. Pietruska-Pałuba, On a variant of the Gagliardo–Nirenberg inequality deduced from the Hardy inequality, Bull. Pol. Acad. Sci. Math. 59 (2011), no. 2, 133–149. 10.4064/ba59-2-4Suche in Google Scholar

[52] A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys 42 (1987), no. 2, 169–222. 10.1070/RM1987v042n02ABEH001309Suche in Google Scholar

[53] Y. J. Kim and R. J. McCann, Potential theory and optimal convergence rates in fast nonlinear diffusion, J. Math. Pures Appl. (9) 86 (2006), no. 1, 42–67. 10.1016/j.matpur.2006.01.002Suche in Google Scholar

[54] A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy Type, World Scientific, River Edge, 2003. 10.1142/5129Suche in Google Scholar

[55] A. Kufner, L.-E. Persson and A. Wedestig, A study of some constants characterizing the weighted Hardy inequality, Orlicz Centenary Volume, Banach Center Publ. 64, Polish Academy of Sciences, Warsaw (2004), 135–146. 10.4064/bc64-0-11Suche in Google Scholar

[56] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Math. Appl. 2, Gordon and Breach Science, New York, 1969. Suche in Google Scholar

[57] J. Li, Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources, J. Math. Anal. Appl. 264 (2001), no. 1, 49–67. 10.1006/jmaa.2001.7553Suche in Google Scholar

[58] A.-M. Matei, First eigenvalue for the p-Laplace operator, Nonlinear Anal. 39 (2000), no. 8, 1051–1068. 10.1016/S0362-546X(98)00266-1Suche in Google Scholar

[59] R. J. McCann and D. Slepčev, Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not. IMRN 2006 (2006), Article ID 24947. 10.1155/IMRN/2006/24947Suche in Google Scholar

[60] L. Miclo, Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite?, Ann. Fac. Sci. Toulouse Math. (6) 17 (2008), no. 1, 121–192. 10.5802/afst.1179Suche in Google Scholar

[61] E. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in 𝐑 N , Tr. Mat. Inst. Steklova 227 (1999), no. 18, 192–222. Suche in Google Scholar

[62] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. 10.4064/sm-44-1-31-38Suche in Google Scholar

[63] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1–2, 101–174. 10.1081/PDE-100002243Suche in Google Scholar

[64] A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand. 8 (1960), 143–153. 10.7146/math.scand.a-10602Suche in Google Scholar

[65] L. Schätzler, The obstacle problem for singular doubly nonlinear equations of porous medium type, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no. 3, 503–548. 10.4171/rlm/903Suche in Google Scholar

[66] I. Skrzypczak, Hardy-type inequalities derived from p-harmonic problems, Nonlinear Anal. 93 (2013), 30–50. 10.1016/j.na.2013.07.006Suche in Google Scholar

[67] I. Skrzypczak, Hardy–Poincaré type inequalities derived from p-harmonic problems, Calculus of Variations and PDEs, Banach Center Publ. 101, Polish Academy of Sciences, Warsaw (2014), 225–238. 10.4064/bc101-0-17Suche in Google Scholar

[68] J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Ser. Math. Appl. 33, Oxford University, Oxford, 2006. 10.1093/acprof:oso/9780199202973.001.0001Suche in Google Scholar

[69] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Math. Monogr., Oxford University, Oxford, 2007. Suche in Google Scholar

[70] J. L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math. 2186, Springer, Cham (2017), 205–278. 10.1007/978-3-319-61494-6_5Suche in Google Scholar

[71] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), no. 1, 103–153. 10.1006/jfan.1999.3556Suche in Google Scholar

[72] V. Vespri and M. Vestberg, An extensive study of the regularity of solutions to doubly singular equations, Adv. Calc. Var. 15 (2022), no. 3, 435–473. 10.1515/acv-2019-0102Suche in Google Scholar

[73] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific, River Edge, 2001. 10.1142/4782Suche in Google Scholar

Received: 2022-03-09
Revised: 2022-09-23
Accepted: 2022-09-25
Published Online: 2022-11-11
Published in Print: 2024-04-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2022-0021/html
Button zum nach oben scrollen