Startseite Equivalence of ray monotonicity properties and classification of optimal transport maps for strictly convex norms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Equivalence of ray monotonicity properties and classification of optimal transport maps for strictly convex norms

  • Ping Chen EMAIL logo
Veröffentlicht/Copyright: 3. September 2020

Abstract

In this paper, we first define ray increasing and decreasing monotonicity of maps. If 𝑇 is an optimal transport map for the Monge problem with cost function ∄ y - x ∄ sc in R n or 𝑇 is an optimal transport map for the Monge problem with cost function d ⁹ ( x , y ) , the geodesic distance, in more general, non-branching geodesic spaces 𝑋, we show respectively equivalence of some previously introduced monotonicity properties and the property of ray increasing as well as ray decreasing monotonicity which we define in this paper. Then, by solving secondary variational problems associated with strictly convex and concave functions respectively, we show that there exist ray increasing and decreasing optimal transport maps for the Monge problem with cost function ∄ y - x ∄ sc . Finally, we give the classification of optimal transport maps for the Monge problem such that the cost function ∄ y - x ∄ sc further satisfies the uniform smoothness and convexity estimates. That is, all of the optimal transport maps for such Monge problem can be divided into three different classes: the ray increasing map, the ray decreasing map and others.

MSC 2010: 49J45; 49Q20; 49K30

Award Identifier / Grant number: 11601193

Funding statement: The research of the author was supported by the National Natural Science Foundation of China (No. 11601193), the Qing Lan Project of Jiangsu Province, and Jiangsu Overseas Visiting Scholar program for University Prominent Young & Middle-aged Teachers and Presidents.

  1. Communicated by: Frank Duzaar

References

[1] L. Ambrosio, Lecture notes on optimal transport problems, Mathematical Aspects of Evolving Interfaces (Funchal 2000), Lecture Notes in Math. 1812, Springer, Berlin (2003), 1–52. 10.1007/978-3-540-39189-0_1Suche in Google Scholar

[2] L. Ambrosio and N. Gigli, A user’s guide to optimal transport, Modelling and Optimisation of Flows on Networks, Lecture Notes in Math. 2062, Springer, Heidelberg (2013), 1–155. 10.1007/978-3-642-32160-3_1Suche in Google Scholar

[3] L. Ambrosio, B. Kirchheim and A. Pratelli, Existence of optimal transport maps for crystalline norms, Duke Math. J. 125 (2004), no. 2, 207–241. 10.1215/S0012-7094-04-12521-7Suche in Google Scholar

[4] L. Ambrosio and A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, Optimal Transportation and Applications (Martina Franca 2001), Lecture Notes in Math. 1813, Springer, Berlin (2003), 123–160. 10.1007/978-3-540-44857-0_5Suche in Google Scholar

[5] L. A. Caffarelli, M. Feldman and R. J. McCann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002), no. 1, 1–26. 10.1090/S0894-0347-01-00376-9Suche in Google Scholar

[6] L. Caravenna, A proof of Monge problem in R n by stability, Rend. Istit. Mat. Univ. Trieste 43 (2011), 31–51. Suche in Google Scholar

[7] T. Champion and L. De Pascale, The Monge problem for strictly convex norms in R d , J. Eur. Math. Soc. (JEMS) 12 (2010), no. 6, 1355–1369. 10.4171/JEMS/234Suche in Google Scholar

[8] T. Champion and L. De Pascale, The Monge problem in R d , Duke Math. J. 157 (2011), no. 3, 551–572. 10.1215/00127094-1272939Suche in Google Scholar

[9] T. Champion, L. De Pascale and P. Juutinen, The ∞-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAM J. Math. Anal. 40 (2008), no. 1, 1–20. 10.1137/07069938XSuche in Google Scholar

[10] P. Chen, F. Jiang and X.-P. Yang, Optimal transportation in R n for a distance cost with a convex constraint, Z. Angew. Math. Phys. 66 (2015), no. 3, 587–606. 10.1007/s00033-014-0444-3Suche in Google Scholar

[11] P. Chen and X.-P. Yang, Ray decreasing optimal transport maps of the Monge problem for strictly convex norms, to appear. Suche in Google Scholar

[12] L. De Pascale and S. Rigot, Monge’s transport problem in the Heisenberg group, Adv. Calc. Var. 4 (2011), no. 2, 195–227. 10.1515/acv.2010.026Suche in Google Scholar

[13] L. C. Evans and W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, 1–66. 10.1090/memo/0653Suche in Google Scholar

[14] M. Feldman and R. J. McCann, Monge’s transport problem on a Riemannian manifold, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1667–1697. 10.1090/S0002-9947-01-02930-0Suche in Google Scholar

[15] M. Feldman and R. J. McCann, Uniqueness and transport density in Monge’s mass transportation problem, Calc. Var. Partial Differential Equations 15 (2002), no. 1, 81–113. 10.1007/s005260100119Suche in Google Scholar

[16] C. Jimenez and F. Santambrogio, Optimal transportation in the quadratic case with a convex constraint, J. Math. Pures Appl. (9) 98 (2012), 103–113. 10.1016/j.matpur.2012.01.002Suche in Google Scholar

[17] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (1995), no. 2, 309–323. 10.1215/S0012-7094-95-08013-2Suche in Google Scholar

[18] P. Pegon, F. Santambrogio and D. Piazzoli, Full characterization of optimal transport plans for concave costs, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 6113–6132. 10.3934/dcds.2015.35.6113Suche in Google Scholar

[19] S. T. Rachev and L. RĂŒschendorf, Mass Transportation Problems. Vol. I: Theory, Probab. Appl. (N. Y.), Springer, New York, 1998. Suche in Google Scholar

[20] S. T. Rachev and L. RĂŒschendorf, Mass transportation problems. Vol. II: Applications, Probab. Appl. (N. Y.), Springer, New York, 1998. Suche in Google Scholar

[21] F. Santambrogio, Absolute continuity and summability of transport densities: Simpler proofs and new estimates, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 343–354. 10.1007/s00526-009-0231-8Suche in Google Scholar

[22] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progr. Nonlinear Differential Equations Appl. 87, BirkhÀuser/Springer, Cham, 2015. 10.1007/978-3-319-20828-2Suche in Google Scholar

[23] V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions, Trudy Mat. Inst. Steklov. 141 (1976), 1–191. Suche in Google Scholar

[24] N. S. Trudinger and X.-J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations 13 (2001), no. 1, 19–31. 10.1007/PL00009922Suche in Google Scholar

[25] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, American Mathematical Society, Providence, 2003. 10.1090/gsm/058Suche in Google Scholar

[26] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss. 338, Springer, Berlin, 2009. 10.1007/978-3-540-71050-9Suche in Google Scholar

Received: 2019-11-12
Revised: 2020-07-30
Accepted: 2020-08-19
Published Online: 2020-09-03
Published in Print: 2022-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2019-0099/html
Button zum nach oben scrollen