Startseite Mathematik Existence for singular critical exponential (𝑝, 𝑄) equations in the Heisenberg group
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence for singular critical exponential (𝑝, 𝑄) equations in the Heisenberg group

  • Patrizia Pucci ORCID logo EMAIL logo und Letizia Temperini ORCID logo
Veröffentlicht/Copyright: 26. Mai 2021

Abstract

The paper deals with the existence of nontrivial solutions for ( p , Q ) equations in the Heisenberg group H n with critical exponential growth at infinity and a singular behavior at the origin. The main features and novelty of the paper are the above generality on the right-hand side of the equation, the ( p , Q ) growth of the elliptic operator and the fact that the equation is studied in the entire Heisenberg group.

MSC 2010: 35B08; 35B33; 35J20; 35J60; 35R03

Award Identifier / Grant number: Prot_U-UFMBAZ-2020-000761

Funding statement: P. Pucci and L. Temperini are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The manuscript was realized within the auspices of the INdAM-GNAMPA Project 2020 titled Equazioni alle derivate parziali: problemi e modelli (Prot_U-UFMBAZ-2020-000761). P. Pucci was also partly supported by the Fondo Ricerca di Base di Ateneo – Esercizio 2017–2019 of the University of Perugia, named PDEs and Nonlinear Analysis.

  1. Communicated by: Juan Manfredi

References

[1] S. Adachi and K. Tanaka, Trudinger type inequalities in R N and their best exponents, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2051–2057. 10.1090/S0002-9939-99-05180-1Suche in Google Scholar

[2] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385–398. 10.2307/1971445Suche in Google Scholar

[3] C. O. Alves and L. R. de Freitas, Multiplicity of nonradial solutions for a class of quasilinear equations on annulus with exponential critical growth, Topol. Methods Nonlinear Anal. 39 (2012), no. 2, 243–262. Suche in Google Scholar

[4] C. O. Alves and L. R. de Freitas, Multiplicity results for a class of quasilinear equations with exponential critical growth, Math. Nachr. 291 (2018), no. 2–3, 222–224. 10.1002/mana.201500371Suche in Google Scholar

[5] C. O. Alves, L. R. de Freitas and S. H. M. Soares, Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth, Differential Integral Equations 24 (2011), no. 11–12, 1047–1062. 10.57262/die/1356012875Suche in Google Scholar

[6] A. Baldi, B. Franchi, N. Tchou and M. C. Tesi, Compensated compactness for differential forms in Carnot groups and applications, Adv. Math. 223 (2010), no. 5, 1555–1607. 10.1016/j.aim.2009.09.020Suche in Google Scholar

[7] Z. M. Balogh and A. Kristály, Lions-type compactness and Rubik actions on the Heisenberg group, Calc. Var. Partial Differential Equations 48 (2013), no. 1–2, 89–109. 10.1007/s00526-012-0543-ySuche in Google Scholar

[8] S. Bordoni and P. Pucci, Schrödinger–Hardy systems involving two Laplacian operators in the Heisenberg group, Bull. Sci. Math. 146 (2018), 50–88. 10.1016/j.bulsci.2018.03.001Suche in Google Scholar

[9] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R 2 , Comm. Partial Differential Equations 17 (1992), no. 3–4, 407–435. 10.1080/03605309208820848Suche in Google Scholar

[10] L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progr. Math. 259, BirkhÀuser, Basel, 2007. Suche in Google Scholar

[11] P. Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups, American Mathematical Society, Providence (1966), 361–383. 10.1090/pspum/009/0216825Suche in Google Scholar

[12] L. Cherfils and Y. IlĂœasov, On the stationary solutions of generalized reaction diffusion equations with p & q –Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9–22. 10.3934/cpaa.2005.4.9Suche in Google Scholar

[13] W. S. Cohn, N. Lam, G. Lu and Y. Yang, The Moser–Trudinger inequality in unbounded domains of Heisenberg group and sub-elliptic equations, Nonlinear Anal. 75 (2012), no. 12, 4483–4495. 10.1016/j.na.2011.09.053Suche in Google Scholar

[14] W. S. Cohn and G. Lu, Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J. 50 (2001), no. 4, 1567–1591. 10.1512/iumj.2001.50.2138Suche in Google Scholar

[15] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273. 10.1007/s00205-015-0859-9Suche in Google Scholar

[16] M. Colombo and G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal. 270 (2016), no. 4, 1416–1478. 10.1016/j.jfa.2015.06.022Suche in Google Scholar

[17] D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in R 2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153. 10.1007/BF01205003Suche in Google Scholar

[18] P. P. Divakaran, Quantum theory as the representation theory of symmetries, Phys. Rev. Lett. 79 (1997), no. 12, 2159–2163. 10.1103/PhysRevLett.79.2159Suche in Google Scholar

[19] J. A. M. B. do Ó, 𝑁-Laplacian equations in R N with critical growth, Abstr. Appl. Anal. 2 (1997), no. 3–4, 301–315. 10.1155/S1085337597000419Suche in Google Scholar

[20] G. M. Figueiredo and F. B. M. Nunes, Existence of positive solutions for a class of quasilinear elliptic problems with exponential growth via the Nehari manifold method, Rev. Mat. Complut. 32 (2019), no. 1, 1–18. 10.1007/s13163-018-0283-4Suche in Google Scholar

[21] A. Fiscella and P. Pucci, ( p , q ) systems with critical terms in R N , Nonlinear Anal. 177 (2018), 454–479. 10.1016/j.na.2018.03.012Suche in Google Scholar

[22] A. Fiscella and P. Pucci, ( p , N ) equations with critical exponential nonlinearities in R N , J. Math. Anal. Appl. 501 (2021), Article ID 123379. Suche in Google Scholar

[23] A. Fiscella and P. Pucci, Degenerate Kirchhoff ( p , q ) -fractional systems with critical nonlinearities, Fract. Calc. Appl. Anal. 23 (2020), no. 3, 723–752. 10.1515/fca-2020-0036Suche in Google Scholar

[24] G. B. Folland and E. M. Stein, Estimates for the ∂ ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. 10.1002/cpa.3160270403Suche in Google Scholar

[25] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton University, Princeton, 1982. 10.1515/9780691222455Suche in Google Scholar

[26] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted PoincarĂ© inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 577–604. 10.5802/aif.1466Suche in Google Scholar

[27] N. Fusco and C. Sbordone, Local boundedness of minimizers in a limit case, Manuscripta Math. 69 (1990), no. 1, 19–25. 10.1007/BF02567909Suche in Google Scholar

[28] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 313–356. 10.5802/aif.1215Suche in Google Scholar

[29] N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot–CarathĂ©odory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), no. 10, 1081–1144. 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-ASuche in Google Scholar

[30] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. 10.1007/BF02392081Suche in Google Scholar

[31] S. P. Ivanov and D. N. Vassilev, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem, World Scientific, Hackensack, 2011. 10.1142/7647Suche in Google Scholar

[32] E. Kaniuth, A Course in Commutative Banach Algebras, Grad. Texts in Math. 246, Springer, New York, 2009. 10.1007/978-0-387-72476-8Suche in Google Scholar

[33] N. Lam and G. Lu, Existence and multiplicity of solutions to equations of 𝑁-Laplacian type with critical exponential growth in R N , J. Funct. Anal. 262 (2012), no. 3, 1132–1165. 10.1016/j.jfa.2011.10.012Suche in Google Scholar

[34] N. Lam and G. Lu, Sharp Moser–Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math. 231 (2012), no. 6, 3259–3287. 10.1016/j.aim.2012.09.004Suche in Google Scholar

[35] N. Lam and G. Lu, 𝑁-Laplacian equations in R N with subcritical and critical growth without the Ambrosetti–Rabinowitz condition, Adv. Nonlinear Stud. 13 (2013), no. 2, 289–308. 10.1515/ans-2013-0203Suche in Google Scholar

[36] N. Lam, G. Lu and H. Tang, On nonuniformly subelliptic equations of 𝑄-sub-Laplacian type with critical growth in the Heisenberg group, Adv. Nonlinear Stud. 12 (2012), no. 3, 659–681. 10.1515/ans-2012-0312Suche in Google Scholar

[37] N. Lam, G. Lu and H. Tang, Sharp subcritical Moser–Trudinger inequalities on Heisenberg groups and subelliptic PDEs, Nonlinear Anal. 95 (2014), 77–92. 10.1016/j.na.2013.08.031Suche in Google Scholar

[38] G. P. Leonardi and S. Masnou, On the isoperimetric problem in the Heisenberg group H n , Ann. Mat. Pura Appl. (4) 184 (2005), no. 4, 533–553. 10.1007/s10231-004-0127-3Suche in Google Scholar

[39] J. Li, G. Lu and M. Zhu, Concentration-compactness principle for Trudinger–Moser inequalities on Heisenberg groups and existence of ground state solutions, Calc. Var. Partial Differential Equations 57 (2018), no. 3, Paper No. 84. 10.1007/s00526-018-1352-8Suche in Google Scholar

[40] G. Lu, Existence and size estimates for the Green’s functions of differential operators constructed from degenerate vector fields, Comm. Partial Differential Equations 17 (1992), no. 7–8, 1213–1251. 10.1080/03605309208820883Suche in Google Scholar

[41] G. Lu, Weighted PoincarĂ© and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications, Rev. Mat. Iberoam. 8 (1992), no. 3, 367–439. 10.4171/RMI/129Suche in Google Scholar

[42] G. Lu, The sharp PoincarĂ© inequality for free vector fields: An endpoint result, Rev. Mat. Iberoam. 10 (1994), no. 2, 453–466. 10.4171/RMI/158Suche in Google Scholar

[43] P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. PoincarĂ© Anal. Non LinĂ©aire 3 (1986), no. 5, 391–409. 10.1016/s0294-1449(16)30379-1Suche in Google Scholar

[44] G. Mingione, A. Zatorska-Goldstein and X. Zhong, Gradient regularity for elliptic equations in the Heisenberg group, Adv. Math. 222 (2009), no. 1, 62–129. 10.1016/j.aim.2009.03.016Suche in Google Scholar

[45] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. 10.1512/iumj.1971.20.20101Suche in Google Scholar

[46] P. Pucci and L. Temperini, Existence for ( p , q ) critical systems in the Heisenberg group, Adv. Nonlinear Anal. 9 (2020), no. 1, 895–922. 10.1515/anona-2020-0032Suche in Google Scholar

[47] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional 𝑝-Laplacian in R N , Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2785–2806. 10.1007/s00526-015-0883-5Suche in Google Scholar

[48] J. Simon, RĂ©gularitĂ© de la solution d’une Ă©quation non linĂ©aire dans R N , JournĂ©es d’Analyse Non LinĂ©aire, Lecture Notes in Math. 665, Springer, Berlin (1978), 205–227. 10.1007/BFb0061807Suche in Google Scholar

[49] K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications, Imperial College, London, 2007. 10.1142/p456Suche in Google Scholar

[50] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. 10.1512/iumj.1968.17.17028Suche in Google Scholar

[51] Y. Yang, Trudinger–Moser inequalities on the entire Heisenberg group, Math. Nachr. 287 (2014), no. 8–9, 1071–1080. 10.1002/mana.201200019Suche in Google Scholar

[52] Y. Yang and K. Perera, ( N , q ) -Laplacian problems with critical Trudinger–Moser nonlinearities, Bull. Lond. Math. Soc. 48 (2016), no. 2, 260–270. 10.1112/blms/bdw002Suche in Google Scholar

[53] S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 1, 305–363. 10.5802/aif.1568Suche in Google Scholar

[54] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710. 10.1070/IM1987v029n01ABEH000958Suche in Google Scholar

Received: 2020-03-28
Revised: 2021-03-31
Accepted: 2021-04-20
Published Online: 2021-05-26
Published in Print: 2022-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2020-0028/html
Button zum nach oben scrollen