Startseite Some new van der Waerden numbers and some van der Waerden-type numbers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some new van der Waerden numbers and some van der Waerden-type numbers

  • Tanbir Ahmed
Veröffentlicht/Copyright: 7. Mai 2009
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Band 9 Heft 1

Abstract

The van der Waerden number w(r; k1, k2, . . . , kr) is the least m such that given any partition {1, 2, . . . , m} = P1P2 ∪ ⋯ ∪ Pr, there is an index j ∈ {1, 2, . . . , r} such that Pj contains an arithmetic progression of length kj. We have computed exact values of some (30) previously unknown van der Waerden numbers and also computed lower bounds of others. Let wd(r; k1, k2, . . . , kr) be the least m such that given any partition {1, 2, . . . , m} = P1P2 ∪ ⋯ ∪ Pr, there is an index j ∈ {1, 2, . . . , r – 1} such that Pj contains an arithmetic progression of length kj, or Pr contains an arithmetic progression of length kr with common difference at most d. A table of observed values of wd(r; k1, k2, . . . , kr) for d = 1, 2, . . . , is given.

Received: 2008-11-15
Accepted: 2009-02-21
Published Online: 2009-05-07
Published in Print: 2009-April

© de Gruyter 2009

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/INTEG.2009.007/html
Button zum nach oben scrollen