Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14)
-
Nadja Leukert
, Clemens Sorg und Johannes Roth
Abstract
S100 proteins form characteristic homo- and/or heterodimers that play a role in calcium-mediated signaling. We characterized the formation of the human S100A8/S100A9 heterodimer using the yeast two-hybrid system. Employing site-directed mutagenesis we found that distinct hydrophobic amino acids of helix I/I′ are located at a crucial site of the S100A8/S100A9 dimer interface, whereas conserved residues within helix IV/IV′ are not important for heterodimerization. Furthermore, amino acids Y16 and F68 prevent homodimerization of human S100A8. These data demonstrate for the first time the functional relevance of distinct hydrophobic amino acids for human S100A8/S100A9 complex formation in vivo.
References
Brodersen, D.E., Etzerodt, M., Madsen, P., Celis, J.E., Thogersen, H.C., Nyborg, J., and Kjeldgaard, M. (1998). EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Structure6, 477–489.10.1016/S0969-2126(98)00049-5Suche in Google Scholar
Cornish, C.J., Devery, J.M., Poronnik, P., Lackmann, M., Cook, D.I., and Geczy, C.L. (1996). S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J. Cell Physiol.166, 427–437.10.1002/(SICI)1097-4652(199602)166:2<427::AID-JCP21>3.0.CO;2-6Suche in Google Scholar
Deloulme, J.C., Assard, N., Mbele, G.O., Mangin, C., Kuwano, R., and Baudier, J. (2000). S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J. Biol. Chem.275, 35302–35310.10.1074/jbc.M003943200Suche in Google Scholar
Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol.33, 637–668.10.1016/S1357-2725(01)00046-2Suche in Google Scholar
Drohat, A.C., Baldisseri, D.M., Rustandi, R.R., and Weber, D.J. (1998). Solution structure of calcium-bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy. Biochemistry37, 2729–2740.10.1021/bi972635pSuche in Google Scholar
Foell, D., Frosch, M., Sorg, C., and Roth, J. (2004). Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin. Chim. Acta344, 37–51.10.1016/j.cccn.2004.02.023Suche in Google Scholar
Fritz, G., Mittl, P.R., Vasak, M., Grutter, M.G., and Heizmann, C.W. (2002). The crystal structure of metal-free human EF-hand protein S100A3 at 1.7-Å resolution. J. Biol. Chem.277, 33092–33098.10.1074/jbc.M200574200Suche in Google Scholar
Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res.20, 1425.10.1093/nar/20.6.1425Suche in Google Scholar
Heizmann, C.W., Fritz, G., and Schafer, B.W. (2002). S100 proteins: structure, functions and pathology. Front. Biosci.7, d1356–d1368.Suche in Google Scholar
Hunter, M.J. and Chazin, W.J. (1998). High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J. Biol. Chem.273, 12427–12435.10.1074/jbc.273.20.12427Suche in Google Scholar
Ishikawa, K., Nakagawa, A., Tanaka, I., Suzuki, M., and Nishihira, J. (2000). The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 Å resolution. Acta Crystallogr. D Biol. Crystallogr.56, 559–566.10.1107/S0907444900002833Suche in Google Scholar
Itou, H., Yao, M., Fujita, I., Watanabe, N., Suzuki, M., Nishihira, J., and Tanaka, I. (2002). The crystal structure of human MRP14 (S100A9), a Ca2+-dependent regulator protein in inflammatory process. J. Mol. Biol.316, 265–276.10.1006/jmbi.2001.5340Suche in Google Scholar
Kilby, P.M., Van Eldik, L.J., and Roberts, G.C. (1996). The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure4, 1041–1052.10.1016/S0969-2126(96)00111-6Suche in Google Scholar
Koltzscher, M. and Gerke, V. (2000). Identification of hydrophobic amino acid residues involved in the formation of S100P homodimers in vivo. Biochemistry39, 9533–9539.10.1021/bi000257+Suche in Google Scholar
Lackmann, M., Cornish, C.J., Simpson, R.J., Moritz, R.L., and Geczy, C.L. (1992). Purification and structural analysis of a murine chemotactic cytokine (CP-10) with sequence homology to S100 proteins. J. Biol. Chem.267, 7499–7504.10.1016/S0021-9258(18)42545-8Suche in Google Scholar
Lackmann, M., Rajasekariah, P., Iismaa, S.E., Jones, G., Cornish, C.J., Hu, S., Simpson, R.J., Moritz, R.L., and Geczy, C.L. (1993). Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J. Immunol.150, 2981–2991.10.4049/jimmunol.150.7.2981Suche in Google Scholar
Matsumura, H., Shiba, T., Inoue, T., Harada, S., and Kai, Y. (1998). A novel mode of target recognition suggested by the Å structure of holo S100B from bovine brain. Structure6, 233–241.10.1016/S0969-2126(98)00024-0Suche in Google Scholar
Moroz, O.V., Antson, A.A., Murshudov, G.N., Maitland, N.J., Dodson, G.G., Wilson, K.S., Skibshoj, I., Lukanidin, E.M., and Bronstein, I.B. (2001). The three-dimensional structure of human S100A12. Acta Crystallogr. D Biol. Crystallogr.57, 20–29.10.1107/S090744490001458XSuche in Google Scholar
Newton, R.A. and Hogg, N. (1998). The human S100 protein MRP-14 is a novel activator of the β2 integrin Mac-1 on neutrophils. J. Immunol.160, 1427–1435.10.4049/jimmunol.160.3.1427Suche in Google Scholar
Odink, K., Cerletti, N., Bruggen, J., Clerc, R.G., Tarcsay, L., Zwadlo, G., Gerhards, G., Schlegel, R., and Sorg, C. (1987). Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature330, 80–82.10.1038/330080a0Suche in Google Scholar
Otterbein, L.R., Kordowska, J., Witte-Hoffmann, C., Wang, C.L., and Dominguez, R. (2002). Crystal structures of S100A6 in the Ca2+-free and Ca2+-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure10, 557–567.10.1016/S0969-2126(02)00740-2Suche in Google Scholar
Potts, B.C., Smith, J., Akke, M., Macke, T.J., Okazaki, K., Hidaka, H., Case, D.A., and Chazin, W.J. (1995). The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat. Struct. Biol.2, 790–796.10.1038/nsb0995-790Suche in Google Scholar PubMed
Potts, B.C., Carlstrom, G., Okazaki, K., Hidaka, H., and Chazin, W.J. (1996). 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100β. Protein Sci.5, 2162–2174.10.1002/pro.5560051103Suche in Google Scholar PubMed PubMed Central
Pröpper, C., Huang, X., Roth, J., Sorg, C., and Nacken, W. (1999). Analysis of the MRP8-MRP14 protein-protein interaction by the two-hybrid system suggests a prominent role of the C-terminal domain of S100 proteins in dimer formation. J. Biol. Chem.274, 183–188.10.1074/jbc.274.1.183Suche in Google Scholar
Roth, J., Vogl, T., Sorg, C., and Sunderkotter, C. (2003). Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol.24, 155–158.10.1016/S1471-4906(03)00062-0Suche in Google Scholar
Rustandi, R.R., Baldisseri, D.M., Inman, K.G., Nizner, P., Hamilton, S.M., Landar, A., Landar, A., Zimmer, D.B., and Weber, D.J. (2002). Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry41, 788–796.10.1021/bi0118308Suche in Google Scholar
Tarabykina, S., Kriajevska, M., Scott, D.J., Hill, T.J., Lafitte, D., Derrick, P.J., Dodson, G.G., Lukanidin, E., and Bronstein, I. (2000). Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. FEBS Lett.475, 187–191.10.1016/S0014-5793(00)01652-5Suche in Google Scholar
Tarabykina, S., Scott, D.J., Herzyk, P., Hill, T.J., Tame, J.R., Kriajevska, M., Lafitte, D., Derrick, P.J., Dodson, G.G., Maitland, N.J., Lukanidin, E.M., and Bronstein, I.B. (2001). The dimerization interface of the metastasis-associated protein S100A4 (Mts1): in vivo and in vitro studies. J. Biol. Chem.276, 24212–24222.10.1074/jbc.M009477200Suche in Google Scholar
Vallely, K.M., Rustandi, R.R., Ellis, K.C., Varlamova, O., Bresnick, A.R., and Weber, D.J. (2002). Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry41, 12670–12680.10.1021/bi020365rSuche in Google Scholar
Vogl, T., Roth, J., Sorg, C., Hillenkamp, F., and Strupat, K. (1999). Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom.10, 1124–1130.Suche in Google Scholar
Vogl, T., Ludwig, S., Goebeler, M., Strey, A., Thorey, I.S., Reichelt, R., Foell, D., Gerke, V., Manitz, M.P., Nacken, W., Werner, S., Sorg, C., and Roth, J. (2004). MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood104, 4260–4268.10.1182/blood-2004-02-0446Suche in Google Scholar
Wang, G., Rudland, P.S., White, M.R., and Barraclough, R. (2000). Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. J. Biol. Chem.275, 11141–11146.10.1074/jbc.275.15.11141Suche in Google Scholar
Zhang, H., Wang, G., Ding, Y., Wang, Z., Barraclough, R., Rudland, P.S., Fernig, D.G., and Rao, Z. (2003). The crystal structure at 2 Å resolution of the Ca2+-binding protein S100P. J. Mol. Biol.325, 785–794.10.1016/S0022-2836(02)01278-0Suche in Google Scholar
© Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes
- Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin
- Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14)
- An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters
- The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype
- Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria
- Ultraspiracle promotes the nuclear localization of ecdysteroid receptor in mammalian cells
- Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction
- The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection
- Susceptibility of the interchain peptide of a bromelain inhibitor precursor to the target proteases bromelain, chymotrypsin, and trypsin
- Blocking effect of a biotinylated protease inhibitor on the egress of Plasmodium falciparum merozoites from infected red blood cells
Artikel in diesem Heft
- Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes
- Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin
- Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14)
- An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters
- The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype
- Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria
- Ultraspiracle promotes the nuclear localization of ecdysteroid receptor in mammalian cells
- Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction
- The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection
- Susceptibility of the interchain peptide of a bromelain inhibitor precursor to the target proteases bromelain, chymotrypsin, and trypsin
- Blocking effect of a biotinylated protease inhibitor on the egress of Plasmodium falciparum merozoites from infected red blood cells