Startseite An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters

  • Holger Zorn , Henning Bouws , Meike Takenberg , Manfred Nimtz , Rita Getzlaff , Dietmar E. Breithaupt und Ralf G. Berger
Veröffentlicht/Copyright: 5. Juli 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 5

Abstract

An extracellular enzyme capable of efficient hydrolysis of xanthophyll esters was purified from culture supernatants of the basidiomycete Pleurotus sapidus. Under native conditions, the enzyme exhibited a molecular mass of 430 kDa, and SDS-PAGE data suggested a composition of eight identical subunits. Biochemical characterisation of the purified protein showed an isoelectric point of 4.5, and ideal hydrolysis conditions were observed at pH 5.8 and 40°C. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. An 1861-bp cDNA containing an open reading frame of 1641 bp was cloned from a cDNA library that showed ca. 40% homology to Candida rugosa lipases. The P. sapidus carboxylesterase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus that has been characterised at the molecular level.

:

Corresponding author

References

Asther, M., Corrieu, G., Drapron, R., and Odier, E. (1987). Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enzyme Microb. Technol.9, 245–249.10.1016/0141-0229(87)90024-XSuche in Google Scholar

Benjamin, S. and Pandey, A. (1998). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast14, 1069–1087.10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-KSuche in Google Scholar

Bourne, Y., Hasper, A., Chahinian, H., Juin, M., de Graaff, L., and Marchot, P. (2004). Aspergillus niger protein EstA defines a new class of fungal esterases within the α/β hydrolase fold superfamily of proteins. Structure12, 677–687.10.1016/j.str.2004.03.005Suche in Google Scholar

Breithaupt, D.E. and Schwack, W. (2000). Determination of free and bound carotenoids in paprika (Capsicum annuum L.) by LC/MS. Eur. Food Res. Technol.211, 52–55.10.1007/s002170050588Suche in Google Scholar

Breithaupt, D.E., Wirt, U., and Bamedi, A. (2002). Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. J. Agric. Food Chem.50, 66–70.Suche in Google Scholar

Combet, C., Blanchet, C., Geourjon, C., and Deleage, G. (2000). NPS@: Network protein sequence analysis. Trends Biochem. Sci.25, 147–150.10.1016/S0968-0004(99)01540-6Suche in Google Scholar

Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, I., Gentry, M.K., and Doctor, B.P. (1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci.2, 366–382.10.1002/pro.5560020309Suche in Google Scholar

Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., and Bairoch, A. (2002). The PROSITE database, its status in 2002. Nucleic Acids Res.30, 235–238.10.1093/nar/30.1.235Suche in Google Scholar

Ghosh, D., Wawrzak, Z., Pletnev, V.Z., Li, N., Kaiser, R., Pangborn, W., et al. (1995). Structure uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure3, 279–288.10.1016/S0969-2126(01)00158-7Suche in Google Scholar

Gish, W. (2004). http://blast.wustl.edu.Suche in Google Scholar

Grochulski, P., Li, Y., Schrag, J.D., and Cygler, M. (1994). Two conformational states of Candida rugosa lipase. Protein Sci.3, 82–91.10.1002/pro.5560030111Suche in Google Scholar

Guex, N. and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis18, 2714–2723.10.1002/elps.1150181505Suche in Google Scholar

Gutierrez, A., del Rio, J.C., Martinez-Inigo, M.J., Martinez, M.J., and Martinez, A.T. (2002). Production of new unsaturated lipids during wood decay by lignolytic basidiomycetes. Appl. Environ. Microbiol.68, 1344–1350.10.1128/AEM.68.3.1344-1350.2002Suche in Google Scholar

Hädrich-Meyer, S. and Berger, R.G. (1994). Localization of lipolytic and esterolytic activities in Tyromyces sambuceus, a 4-decanolide-producing basidiomycete. Appl. Microbiol. Biotechnol.41, 210–214.10.1007/BF00186961Suche in Google Scholar

Hencken, H. (1992). Chemical and physiological behaviour of feed carotenoids and their effects on pigmentation. Poult. Sci.71, 711–717.10.3382/ps.0710711Suche in Google Scholar

Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680.Suche in Google Scholar

Holtz, R.B. and Smith, D.E. (1978). Lipid metabolism of mushroom mycelia. Mushroom Sci.10, 437–444.Suche in Google Scholar

Kaiser, R., Erman, M., Duax, W.L., Ghosh, D., and Jörnvall, H. (1994) Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea. FEBS Lett.337, 123–127.10.1016/0014-5793(94)80257-2Suche in Google Scholar

Laemmli, U.K. (1979). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.Suche in Google Scholar

Landrum, J.T. and Bone, R.A. (2001). Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys.385, 28–40.10.1006/abbi.2000.2171Suche in Google Scholar PubMed

Lockridge, O. (1988). Structure of human serum cholinesterase. Bioessays9, 125–128.10.1002/bies.950090406Suche in Google Scholar PubMed

Mancheno, J.M., Pernas, M.A., Martinez, M.J., Ochoa, B., Rua, M.L., and Hermoso, J.A. (2003). Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97 Å resolution. J. Mol. Biol.332, 1059–1069.10.1016/j.jmb.2003.08.005Suche in Google Scholar PubMed

Nair, N.G., Holley, M.P., Song, C.H., and Cho, K.Y. (1990). Lipid metabolism of Pleurotus sajor caju. Ann. Appl. Biol.116, 455–462.10.1111/j.1744-7348.1990.tb06628.xSuche in Google Scholar

Nuero, O.M., Garcia-Lepe, R., Lahoz, C., Santamaria, F., and Reyes, F. (1994). Detection of lipase activity on ultrathin-layer isoelectric focusing gels. Anal. Biochem.222, 503–505.10.1006/abio.1994.1524Suche in Google Scholar PubMed

Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F. Franken, S.M., Harel, M., Remington, S.J., Silman, I., et al. (1992). The alpha/beta hydrolase fold. Protein Eng.5, 197–211.10.1093/protein/5.3.197Suche in Google Scholar PubMed

Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., and Soccol, V.T. (1999). The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem.29, 119–131.Suche in Google Scholar

Pearson, W.R. and Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA85, 2444–2448.10.1073/pnas.85.8.2444Suche in Google Scholar

Rajarathnam, S., Shashirekha, M.N., and Bano, Z. (1998). Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Crit. Rev. Biotechnol.18, 91–236.10.1080/0738-859891224220Suche in Google Scholar

Saxena, R.K., Sheoran, A., Giri, B., and Davidson, W.S. (2003). Purification strategies for microbial lipases. J. Microbiol. Methods52, 1–18.10.1016/S0167-7012(02)00161-6Suche in Google Scholar

Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res.31, 3381–3385.10.1093/nar/gkg520Suche in Google Scholar PubMed PubMed Central

Sugihara, A., Shimada, Y., and Tominaga, Y. (1990) Separation and characterization of two molecular forms of Geotrichum candidum lipase. J. Biochem.107, 426–430.10.1093/oxfordjournals.jbchem.a123061Suche in Google Scholar PubMed

Wang, C.-S. and Hartsuck, J.A. (1993). Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim. Biophys. Acta1166, 1–19.Suche in Google Scholar

Zorn, H., Breithaupt, D.E., Takenberg, M., Schwack, W., and Berger, R.G. (2003). Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb. Technol.32, 623–628.Suche in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-05-01

© Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes
  2. Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin
  3. Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14)
  4. An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters
  5. The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype
  6. Adrenodoxin (Adx) and CYP11A1 (P450scc) induce apoptosis by the generation of reactive oxygen species in mitochondria
  7. Ultraspiracle promotes the nuclear localization of ecdysteroid receptor in mammalian cells
  8. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction
  9. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection
  10. Susceptibility of the interchain peptide of a bromelain inhibitor precursor to the target proteases bromelain, chymotrypsin, and trypsin
  11. Blocking effect of a biotinylated protease inhibitor on the egress of Plasmodium falciparum merozoites from infected red blood cells
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.052/html
Button zum nach oben scrollen