Kapitel
        
        
            
                    
        
                
                
                    
                
                
            
            
                
            
            
            
            
            
            
        
    
    
    Lizenziert
                
                    
                    Nicht lizenziert
                    
                    Erfordert eine Authentifizierung
                
            
    
                
        
        Chapter 26. Phase Shift for a Special Solution to the Korteweg–de Vries Equation in the Whitham Zone
- 
            
            
        Rustem N. Garifullin
        
 
                                    
                                    Sie haben derzeit keinen Zugang zu diesem Inhalt.
                                
                                
                                
                                                
                                                Sie haben derzeit keinen Zugang zu diesem Inhalt.
                                            
                                            
                                            Kapitel in diesem Buch
- Frontmatter i
 - Preface v
 - Contents vii
 - 
                            Part I. Plane Power Geometry
 - Chapter 1. Plane Power Geometry for One ODE and P1–P6 3
 - Chapter 2. New Simple Exact Solutions to Equation P6 13
 - Chapter 3. Convergence of a Formal Solution to an ODE 23
 - Chapter 4. Asymptotic Expansions and Forms of Solutions to P6 27
 - Chapter 5. Asymptotic Expansions of Solutions to P5 33
 - 
                            Part II. Space Power Geometry
 - Chapter 6. Space Power Geometry for one ODE and P1–P4, P6 41
 - Chapter 7. Elliptic and Periodic Asymptotic Forms of Solutions to P5 53
 - Chapter 8. Regular Asymptotic Expansions of Solutions to One ODE and P1–P5 67
 - 
                            Part III. Isomondromy Deformations
 - Chapter 9. Isomonodromic Deformations on Riemann Surfaces 85
 - Chapter 10. On Birational Darboux Coordinates of Isomonodromic Deformation Equations Phase Space 91
 - Chapter 11. On the Malgrange Isomonodromic Deformations of Nonresonant Irregular Systems 95
 - Chapter 12. Critical behavior of P6 Functions from the Isomonodromy Deformations Approach 101
 - Chapter 13. Isomonodromy Deformation of the Heun Class Equation 107
 - Chapter 14. Isomonodromy Deformations and Hypergeometric-Type Systems 117
 - Chapter 15. A Monodromy Problem Connected with P6 123
 - Chapter 16. Monodromy Evolving Deformations and Confluent Halphen’s Systems 129
 - Chapter 17. On the Gauge Transformation of the Sixth Painlevé Equation 137
 - Chapter 18. Expansions for Solutions of the Schlesinger Equation at a Singular Point 151
 - 
                            Part IV. Painlevé Property
 - Chapter 19. Painleve Analysis of Lotka–Volterra Equations 161
 - Chapter 20. Painlevé Test and Briot–Bouquet Systems 165
 - Chapter 21. Solutions of the Chazy System 167
 - Chapter 22. Third-Order Ordinary Differential Equations with the Painlevé Test 171
 - Chapter 23. Analytic Properties of Solutions of a Class of Third-Order Equations with an Irrational Right-Hand Side 185
 - 
                            Part V. Other Aspects
 - Chapter 24. The Sixth Painlevé Transcendent and Uniformizable Orbifolds 193
 - Chapter 25. On Uniformizable Representation for Abelian Integrals 199
 - Chapter 26. Phase Shift for a Special Solution to the Korteweg–de Vries Equation in the Whitham Zone 209
 - Chapter 27. Fuchsian Reduction of Differential Equations 213
 - Chapter 28. The Voros Coefficient and the Parametric Stokes Phenomenon for the Second Painlevé Equation 225
 - Chapter 29. Integral Symmetry and the Deformed Hypergeometric Equation 231
 - Chapter 30. Integral Symmetries for Confluent Heun Equations and Symmetries of Painlevé Equation P5 237
 - Chapter 31. From the Tau Function of Painlevé P6 Equation to Moduli Spaces 241
 - Chapter 32. On particular Solutions of q-Painlevé Equations and q-Hypergeometric Equations 247
 - Chapter 33. Derivation of Painlevé Equations by Antiquantization 253
 - Chapter 34. Integral Transformation of Heun’s Equation and Apparent Singularity 257
 - Chapter 35. Painlevé Analysis of Solutions to Some Nonlinear Differential Equations and their Systems Associated with Models of the Random-Matrix Type 263
 - Chapter 36. Reductions on the Lattice and Painlevé Equations P2, P5, P6 267
 - Comments 271
 
Kapitel in diesem Buch
- Frontmatter i
 - Preface v
 - Contents vii
 - 
                            Part I. Plane Power Geometry
 - Chapter 1. Plane Power Geometry for One ODE and P1–P6 3
 - Chapter 2. New Simple Exact Solutions to Equation P6 13
 - Chapter 3. Convergence of a Formal Solution to an ODE 23
 - Chapter 4. Asymptotic Expansions and Forms of Solutions to P6 27
 - Chapter 5. Asymptotic Expansions of Solutions to P5 33
 - 
                            Part II. Space Power Geometry
 - Chapter 6. Space Power Geometry for one ODE and P1–P4, P6 41
 - Chapter 7. Elliptic and Periodic Asymptotic Forms of Solutions to P5 53
 - Chapter 8. Regular Asymptotic Expansions of Solutions to One ODE and P1–P5 67
 - 
                            Part III. Isomondromy Deformations
 - Chapter 9. Isomonodromic Deformations on Riemann Surfaces 85
 - Chapter 10. On Birational Darboux Coordinates of Isomonodromic Deformation Equations Phase Space 91
 - Chapter 11. On the Malgrange Isomonodromic Deformations of Nonresonant Irregular Systems 95
 - Chapter 12. Critical behavior of P6 Functions from the Isomonodromy Deformations Approach 101
 - Chapter 13. Isomonodromy Deformation of the Heun Class Equation 107
 - Chapter 14. Isomonodromy Deformations and Hypergeometric-Type Systems 117
 - Chapter 15. A Monodromy Problem Connected with P6 123
 - Chapter 16. Monodromy Evolving Deformations and Confluent Halphen’s Systems 129
 - Chapter 17. On the Gauge Transformation of the Sixth Painlevé Equation 137
 - Chapter 18. Expansions for Solutions of the Schlesinger Equation at a Singular Point 151
 - 
                            Part IV. Painlevé Property
 - Chapter 19. Painleve Analysis of Lotka–Volterra Equations 161
 - Chapter 20. Painlevé Test and Briot–Bouquet Systems 165
 - Chapter 21. Solutions of the Chazy System 167
 - Chapter 22. Third-Order Ordinary Differential Equations with the Painlevé Test 171
 - Chapter 23. Analytic Properties of Solutions of a Class of Third-Order Equations with an Irrational Right-Hand Side 185
 - 
                            Part V. Other Aspects
 - Chapter 24. The Sixth Painlevé Transcendent and Uniformizable Orbifolds 193
 - Chapter 25. On Uniformizable Representation for Abelian Integrals 199
 - Chapter 26. Phase Shift for a Special Solution to the Korteweg–de Vries Equation in the Whitham Zone 209
 - Chapter 27. Fuchsian Reduction of Differential Equations 213
 - Chapter 28. The Voros Coefficient and the Parametric Stokes Phenomenon for the Second Painlevé Equation 225
 - Chapter 29. Integral Symmetry and the Deformed Hypergeometric Equation 231
 - Chapter 30. Integral Symmetries for Confluent Heun Equations and Symmetries of Painlevé Equation P5 237
 - Chapter 31. From the Tau Function of Painlevé P6 Equation to Moduli Spaces 241
 - Chapter 32. On particular Solutions of q-Painlevé Equations and q-Hypergeometric Equations 247
 - Chapter 33. Derivation of Painlevé Equations by Antiquantization 253
 - Chapter 34. Integral Transformation of Heun’s Equation and Apparent Singularity 257
 - Chapter 35. Painlevé Analysis of Solutions to Some Nonlinear Differential Equations and their Systems Associated with Models of the Random-Matrix Type 263
 - Chapter 36. Reductions on the Lattice and Painlevé Equations P2, P5, P6 267
 - Comments 271