Performance of MAX Test and Degree of Dominance Index in Predicting the Mode of Inheritance
-
Elias Zintzaras
und Mauro Santos
Abstract
We evaluate power performance to detect the correct mode of inheritance in gene-disease associations of two different approaches: the MAX test and the degree of dominance index or h-index. The MAX test is a special case of the conditional independence tests that simultaneously test for association and select the most likely genetic model based on a three-dimensional normal distribution. The h-index is based on the philosophy of using orthogonal contrasts to infer the mode of inheritance quantitatively. A population genetic model is developed where the real mode of inheritance is known a priori and power performance can be accurately determined. The simulations showed that none of the two approaches generally outperforms the other, nor each of them provides a panacea to estimate efficiently the mode of inheritance in all parameter space. However, the simultaneous application of both approaches can provide insights in determining the underlying mode of inheritance.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- A New Explained-Variance Based Genetic Risk Score for Predictive Modeling of Disease Risk
- Hessian Calculation for Phylogenetic Likelihood based on the Pruning Algorithm and its Applications
- Cluster-Localized Sparse Logistic Regression for SNP Data
- How to analyze many contingency tables simultaneously in genetic association studies
- Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure
- Estimating the Number of One-step Beneficial Mutations
- Testing clonality of three and more tumors using their loss of heterozygosity profiles
- Correction for Founder Effects in Host-Viral Association Studies via Principal Components
- A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology
- An Integrated Hierarchical Bayesian Model for Multivariate eQTL Mapping
- A Novel and Fast Normalization Method for High-Density Arrays
- Performance of MAX Test and Degree of Dominance Index in Predicting the Mode of Inheritance
- A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data
- QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function
- Computing Posterior Probabilities for Score-based Alignments Using ppALIGN
Artikel in diesem Heft
- Article
- A New Explained-Variance Based Genetic Risk Score for Predictive Modeling of Disease Risk
- Hessian Calculation for Phylogenetic Likelihood based on the Pruning Algorithm and its Applications
- Cluster-Localized Sparse Logistic Regression for SNP Data
- How to analyze many contingency tables simultaneously in genetic association studies
- Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure
- Estimating the Number of One-step Beneficial Mutations
- Testing clonality of three and more tumors using their loss of heterozygosity profiles
- Correction for Founder Effects in Host-Viral Association Studies via Principal Components
- A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology
- An Integrated Hierarchical Bayesian Model for Multivariate eQTL Mapping
- A Novel and Fast Normalization Method for High-Density Arrays
- Performance of MAX Test and Degree of Dominance Index in Predicting the Mode of Inheritance
- A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data
- QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function
- Computing Posterior Probabilities for Score-based Alignments Using ppALIGN