Startseite A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data

  • Alessio Farcomeni und Serena Arima
Veröffentlicht/Copyright: 27. Juni 2012

Abstract

When modeling time course microarray data special interest may reside in identifying time frames in which gene expression levels follow a monotonic (increasing or decreasing) trend. A trajectory may change its regime because of the reaction to treatment or of a natural developmental phase, as in our motivating example about identification of genes involved in embryo development of mice with the 22q11 deletion. To this aim we propose a new flexible Bayesian autoregressive hidden Markov model based on three latent states, corresponding to stationarity, to an increasing and to a decreasing trend. In order to select a list of genes, we propose decision criteria based on the posterior distribution of the parameters of interest, taking into account the uncertainty in parameter estimates. We also compare the proposed model with two simpler models based on constrained formulations of the probability transition matrix.

Published Online: 2012-6-27

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/1544-6115.1778/html
Button zum nach oben scrollen