Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.
                    
                
                Inhalt
            - 
    Erfordert eine Authentifizierung Nicht lizenziertA New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk AlloysLizenziert14. Juni 2011
- 
    Erfordert eine Authentifizierung Nicht lizenziertPerforated Arc-Tabs for Jet ControlLizenziert14. Juni 2011
- 
    Erfordert eine Authentifizierung Nicht lizenziertNumerical Analysis of Intercooled and Recuperated Turbofan EngineLizenziert20. Mai 2011
- 
    Erfordert eine Authentifizierung Nicht lizenziertJet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine BladesLizenziert14. Juni 2011
- 
    Erfordert eine Authentifizierung Nicht lizenziertNumerical Simulation and Experimental Study of a Dental Handpiece Air TurbineLizenziert14. Juni 2011