Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks. Jouini, Meddeb, and Touzi (2004) and Burgert and Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland, Galichon, and Henry (2009) and Rüschendorf (2006, 2010) obtained extensions of the above theorems of Kusuoka to this setting. Their results were confined to the regular case. In general, Kusuoka´s representation theorem for comonotone risk measures also involves a singular part. In the present work we give a full generalization of Kusuoka´s theorems to the vector-valued case. The singular component turns out to have a richer structure than in the scalar case.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertLaw invariant risk measures on L∞ (ℝd)Lizenziert4. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertA Bayesian sequential testing problem of three hypotheses for Brownian motionLizenziert4. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertOptimal dividend-payout in random discrete timeLizenziert4. November 2011
-
Erfordert eine Authentifizierung Nicht lizenziertMultivariate log-concave distributions as a nearly parametric modelLizenziert4. November 2011