Our problem here starts when the seller of an American option H has an initial capital c and aims to control shortfall risk by optimally trading in the market. We consider the case where the initial capital c is smaller than the superhedging cost of H . Thus, it is meaningful to consider efficient strategies of partial hedging . We investigate in the American case the approach of Föllmer and Leukert of efficiently hedging European options. At the same time, we consider situations where the model R is ambiguous. This implies that the seller´s preference is going to be represented by a robust loss functional, involving a whole class of absolutely continuous probability measures Q . We apply a construction due to Föllmer and Kramkov on the existence of Fatou-convergent sequences of convex combinations of supermartingales, to show that optimal strategies minimizing such a functional exist. We then show that the robust efficient hedging problem can be reduced into a non-robust problem of efficient hedging with respect to a worst case probability measure Q * ∈ Q , if Q satisfies a compactness condition and H is essentially bounded.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertRobust efficient hedging for American options: The existence of worst case probability measuresLizenziert4. Dezember 2009
-
Erfordert eine Authentifizierung Nicht lizenziertShrinkage estimation in elliptically contoured distribution with restricted parameter spaceLizenziert4. Dezember 2009
-
Erfordert eine Authentifizierung Nicht lizenziertMinimum risk equivariant estimator in linear regression modelLizenziert4. Dezember 2009
-
Erfordert eine Authentifizierung Nicht lizenziertNon-standard behavior of density estimators for sums of squared observationsLizenziert4. Dezember 2009
-
Erfordert eine Authentifizierung Nicht lizenziertThe likelihood ratio test for non-standard hypotheses near the boundary of the null – with application to the assessment of non-inferiorityLizenziert4. Dezember 2009