We consider the median regression model X k = θ( x k ) + ξ k , where the unknown signal θ : [0,1] → ℝ, is assumed to belong to a Hölder smoothness class, the ξ k s are independent, but not necessarily identically distributed, noises with zero median. The distribution of the noise is assumed to be unknown and satisfying some weak conditions. Possible noise distributions may have heavy tails, so that, for example, the expectation of noises does not exist. This implies that in general linear methods (for example, kernel method) cannot be applied directly in this situation. On the basis of a preliminary recursive estimator, we construct certain variables Y k s, called pseudovalues which do not depend on the noise distribution, and derive an asymptotic expansion (uniform over a certain class of noise distributions): Y k = θ ( x k ) + ∊ k + r k , where ∊ k s are binary random variables and the remainder terms r k s are negligible. This expansion mimics the nonparametric regression model with binary noises. In so doing, we reduce our original observation model with “bad” (heavy-tailed) noises effectively to the nonparametric regression model with binary noises.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertOn asymptotic expansion of pseudovalues in nonparametric median regressionLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertOn second order minimax estimation of invariant density for ergodic diffusionLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertSainte-Laguë’s chi-square divergence for the rounding of probabilities and its convergence to a stable lawLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertEstimation of linear functionals of bivariate distributions with parametric marginalsLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertA remark on the quickest detection problemsLizenziert25. September 2009