We estimate Boosted Regression Trees (BRT) on a sample of monthly data that extends back to 1889 to recover the predictive value of disaggregated news-based uncertainty indexes for U.S recessions. We control for widely-studied standard predictors and use out-of-sample metrics to assess forecast performance. We find that war-related uncertainty is among the top five predictors of recessions at three different forecast horizons (3, 6, and 12 months). The predictive value of war-related uncertainty has fallen in the second half of the 20th century. Uncertainty regarding the state of securities markets has gained in relative importance. The probability of a recession is a nonlinear function of war-related and securities-markets uncertainty. Receiver-operating-characteristic curves show that uncertainty improves out-of-sample forecast performance at the longer forecast horizons. A dynamic version of the BRT approach sheds light on the importance of various lags of government-related uncertainty for recession forecasting at the long forecast horizon.
Inhalt
- Research Articles
-
Erfordert eine Authentifizierung Nicht lizenziertUncertainty and Forecasts of U.S. RecessionsLizenziert25. Juli 2019
-
Erfordert eine Authentifizierung Nicht lizenziertDissecting skewness under affine jump-diffusionsLizenziert8. November 2019
-
Erfordert eine Authentifizierung Nicht lizenziertThe term structure of Eurozone peripheral bond yields: an asymmetric regime-switching equilibrium correction approachLizenziert16. Dezember 2019
-
Erfordert eine Authentifizierung Nicht lizenziertUnconventional monetary policy reaction functions: evidence from the USLizenziert8. November 2019
-
Erfordert eine Authentifizierung Nicht lizenziertThe nonlinear effects of uncertainty shocksLizenziert26. Oktober 2019
-
Erfordert eine Authentifizierung Nicht lizenziertBayesian analysis of periodic asymmetric power GARCH modelsLizenziert19. Oktober 2019