When a pair of independent series is highly persistent, there is a spurious regression bias in a regression between these series, closely related to the classic studies of Granger and Newbold (1974). Although this is well known to occur with independent I(1) processes, this paper provides theoretical and numerical evidence that the phenomenon of spurious regression also arises in regressions between stationary AR(p) processes with structural breaks, which occur at different points in time, in the means and the trends. The intuition behind this is that structural breaks can increase the persistence levels in the processes (e.g., Granger and Hyung (2004)), which then leads to spurious regressions. These phenomena occur for general distributions and serial dependence of the innovation terms.
Inhalt
- Article
-
Erfordert eine Authentifizierung Nicht lizenziertSpurious Regressions of Stationary AR(p) Processes with Structural BreaksLizenziert14. Dezember 2010
-
Erfordert eine Authentifizierung Nicht lizenziertUnemployment and Hysteresis: A Nonlinear Unobserved Components ApproachLizenziert14. Dezember 2010
-
Erfordert eine Authentifizierung Nicht lizenziertReturn-Volatility Relationship in High Frequency Data: Multiscale Horizon DependencyLizenziert14. Dezember 2010
-
Erfordert eine Authentifizierung Nicht lizenziertThe Determinants of International Financial Integration Revisited: The Role of Networks and Geographic NeutralityLizenziert14. Dezember 2010
- Algorithm
-
Erfordert eine Authentifizierung Nicht lizenziertDetecting Determinism Using Recurrence Quantification Analysis: A Solution to the Problem of EmbeddingLizenziert14. Dezember 2010
- Replication
-
Erfordert eine Authentifizierung Nicht lizenziertTesting the Martingale Property of Exchange Rates: A ReplicationLizenziert14. Dezember 2010