For a given function, we consider the problem of minimizing the P 1 interpolation error on a set of triangulations with a fixed number of triangles. The minimization problem is reformulated as the problem of generating a mesh which is quasi-uniform in a specially designed metric. For functions with indefinite Hessian, we show the existence of a set of metrics with highly diverse properties. This set may include both anisotropic and isotropic metrics, which produce families of different meshes providing a comparable reduction of interpolation error. The developed theory is verified with numerical examples.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertFamilies of meshes minimizing P1 interpolation error for functions with indefinite HessianLizenziert25. August 2011
-
Erfordert eine Authentifizierung Nicht lizenziertUse of analytic solutions in the statement of difference boundary conditions on a movable shorelineLizenziert25. August 2011
-
Erfordert eine Authentifizierung Nicht lizenziertNumerical simulation of the breaking effect in nonlinear axially-symmetric plasma oscillationsLizenziert25. August 2011
-
Erfordert eine Authentifizierung Nicht lizenziertOn periodic trajectories in odd-dimensional gene network modelsLizenziert25. August 2011
-
Erfordert eine Authentifizierung Nicht lizenziertBlowup of errors caused by inexact knowledge of the Poisson ratio in some elasticity problemsLizenziert25. August 2011
-
Erfordert eine Authentifizierung Nicht lizenziertIterative Newton solution method for the Richardson scheme for a semilinear singular perturbed elliptic convection–diffusion equationLizenziert25. August 2011