This paper deals with the computation of the reducing subspace associated with the rightmost part of the spectrum of a large matrix pencil A –λ B with B = diag( I ,0). Two variants of the Jacobi-Davidson method are discussed and developed. One is based on the Euclidean inner product and the second on the semi-inner product induced by B . Both versions use real arithmetics and incorporate an efficient deflation procedure. Numerical results are reported.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertComputing reducing subspaces of a large linear matrix pencilLizenziert
-
Erfordert eine Authentifizierung Nicht lizenziertMajorant frequency principle for an approximate solution of a nonlinear spatially inhomogeneous coagulation equation by the Monte Carlo methodLizenziert
-
Erfordert eine Authentifizierung Nicht lizenziertSpecial algorithms for stochastic simulation of hydrometeorological processes and inhomogeneous fieldsLizenziert
-
Erfordert eine Authentifizierung Nicht lizenziertThe effect of parental life spans on age diseases in humansLizenziert
-
Erfordert eine Authentifizierung Nicht lizenziertComplete optimization of a discrete stochastic numerical procedure for globally estimating the solution of an integral equation of the second kindLizenziert