This article uses techniques from multivariate asymptotic analysis to prove a result of Ikromov-Kiehl-Müller that approximates those p for which a certain maximal operator associated to the graph in of a binary form is bounded on .
Contents
-
Requires Authentication UnlicensedApplications of Multivariate Asymptotics I: Boundedness of a maximal operator onLicensedAugust 31, 2009
-
Requires Authentication UnlicensedGeodesic flow of the averaged controlled Kepler equationLicensedAugust 31, 2009
-
Requires Authentication UnlicensedHyperbolicity in unbounded convex domainsLicensedAugust 31, 2009
-
Requires Authentication UnlicensedExplicit connections with SU(2)-monodromyLicensedAugust 31, 2009
-
Requires Authentication UnlicensedEigentheory of Cayley-Dickson algebrasLicensedAugust 31, 2009
-
Requires Authentication UnlicensedAlternators in the Cayley-Dickson algebrasLicensedAugust 31, 2009
-
Requires Authentication UnlicensedCohomological characterisation of Steiner bundlesLicensedAugust 31, 2009
-
Requires Authentication UnlicensedSigma-cotorsion modules over valuation domainsLicensedAugust 31, 2009
-
Requires Authentication UnlicensedAffine actions on nilpotent Lie groupsLicensedAugust 31, 2009
-
Requires Authentication UnlicensedOn the birational geometry of moduli spaces of pointed curvesLicensedAugust 31, 2009