Home Geodesic flow of the averaged controlled Kepler equation
Article
Licensed
Unlicensed Requires Authentication

Geodesic flow of the averaged controlled Kepler equation

  • Bernard Bonnard and Jean-Baptiste Caillau
Published/Copyright: August 31, 2009
Forum Mathematicum
From the journal Volume 21 Issue 5

Abstract

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to S2 is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity at the origin in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controlled Kepler system are finally obtained thanks to the computation of the cut locus of the restriction to the sphere.

Received: 2007-03-12
Published Online: 2009-08-31
Published in Print: 2009-September

© de Gruyter 2009

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/FORUM.2009.038/html
Scroll to top button