Many viral capsids follow an icosahedral fullerene-like structure, creating a caged polyhedral arrangement built entirely from hexagons and pentagons. Viral capsids consist of capsid proteins,which group into clusters of six (hexamers) or five (pentamers). Although the number of hexamers per capsid varies depending on the capsid size, Caspar-Klug Theory dictates there are exactly twelve pentamers needed to form a closed capsid.However, for a significant number of viruses, including viruses of the Papovaviridae family, the theory doesn’t apply. The anomaly of the Caspar-Klug Theory has raised a new question:“For which Caspar and Klug models can each hexamer be replaced with a pentamer while still following icosahedral symmetry?” This paper proposes an answer to this question by examining icosahedral viral capsid-like structures composed only of pentamers, called pentagonal polyhedra. The analysis shows that pentagonal polyhedra fall in a subclass of T, defined by P ≥ 7 and T = 1( mod 3).
Contents
-
March 15, 2018
- Special issue: Modeling and analysis in molecular biology and electrophysiology
-
September 19, 2018
-
September 19, 2018
- Special issue: Computational and Mathematical Drug Design and Discovery
-
Open AccessComputing Optimal Properties of Drugs Using Mathematical Models of Single Channel DynamicsOctober 30, 2018