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Abstract: Single channel dynamics can be modeled using stochastic differential equations, and the dynam-
ics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such
models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate
deleterious effects of mutations. Based on theMarkovmodel and the stochastic models of the single channel,
it is possible to derive deterministic partial differential equations (PDEs) giving the probability density func-
tions (PDFs) of the states of theMarkovmodel. In this study, we have analyzed PDEsmodeling wild type (WT)
channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is
to show that it is possible to optimize the parameters of a given drug such that the solution of the MTDmodel
is very close to that of theWT: themutation’s effect is, theoretically, reduced significantly. Wewill present the
mathematical framework underpinning this methodology and apply it to several examples. In particular, we
will show that it is possible to use the method to, theoretically, improve the properties of some well-known
existing drugs.

1 Introduction
Fluxes through single ion channels serve functions as diverse as volumetric homeostasis of cells to the ex-
citability of their membranes, and are thus of paramount importance in biology[1]. The ability to measure
this flow represented a breakthrough leading to improved mechanistic understanding of excitable biological
membranes and their dynamics [2–5]. Furthermore, availability of measurements from single ion channels
furnished dynamic data to inform developing mathematical models. Theoretically, single channel dynamics
can conveniently be represented using Markov models. While initial models of this type, which may serve to
supplement sparse data and provide a theoretical framework for compact representation and development of
testable hypotheses, were developed by Colquhoun and Hawkes [6, 7], more recently, the inverse problem of
determining the parameters of a Markovmodel based on single channel data have been addressed by several
groups, see e.g. [8–15].

Genetic mutations to proteins composing single ion channels can significantly alter their function, often
leading to severe dysfunction, i.e. disposition to cardiac arrhythmia. As noted above, mathematical models
may serve as a useful testbed by which to investigate aberrant ion channel function and to suggest a the-
oretical pathway for exploring treatment. Conveniently, the effects of a mutation on an ion channel can be
efficiently expressed in terms of changes to a Markov model representing wild type channels; e.g. [16–20].
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Mutation-induced dysfunction can often be relieved by pharmacological intervention, and the effect of drugs
on single channel dynamics can also be studied using Markov models [21–26].

SinceMarkovmodels are such a versatile tool for understanding single ion channel dynamics (wild-type,
as well as with perturbation via mutation and/or drugs), it is important be able to analyze these models effi-
ciently and accurately. A major step in this direction is the development of deterministic partial differential
equations which provide the probability density functions of the stochastic variables representing the states
of the Markov model; see e.g. [27–30].

In the present paper, we review the development of mathematical methods for analyzing Markovmodels
which characterize the effects of drugs on single channel dynamics. We will explain the use of stochastic
models to represent single channel dynamics, and outline how Markov models are used to represent the
state of ion channels.We introducemaster equations associatedwith theMarkovmodels and derive formulas
for the equilibrium solutions of these master equations. Deterministic partial differential equations (PDE)
describing the probability density functions (PDF) of the states of theMarkovmodel are introduced, and both
numerical and analytical techniques are used to study these equations.We use PDE to showhowPDF depend
on the drug properties, and use these to derive optimal properties of the drugs with respect to normalizing
ion channel function in regard to wild type models.

As an exemplar, we apply the mathematical models to study the release of calcium ions from internal
storage structures (the sarcoplasmic reticulum, SR) of cardiac muscle cells, and to study effects of mutations
on the sodium channel located at the cardiac muscle cell membrane. In both cases, we compute optimal
properties of theoretical drugs represented in terms of Markov models. In some cases, we show that we can
analytically derive a theoretical drug that completely rectifies the effect of amutation; in other cases, we need
to run numerical simulations to compute optimal properties of the drug.

A general introduction to the use of PDEs to study how drug properties can be optimized by PDF analysis
was first presented for a mathematical audience in [20]. In the present paper, we summarize the main results
of [20] and add further examples. In particular, we now demonstrate how PDFs can be used to improve ex-
isting pharmacological therapies (i.e. lidocaine and mexiteline). The method introduced here provides very
clear results regarding optimal theoretical properties of a drug which normalizes mutated ion channels with
respect to wild-type function, and thereby offers a theoretical framework by which analyses can be used to
advance understanding of a hypothetical therapeutic target. We also include a theoretical argument showing
that the entire probability density function can be repaired by using the optimal drug.

2 Mathematical models and methods for analyzing single ion
channel dynamics

In this section, we introducemathematical methods for analyzing stochastic release of calcium from internal
storage systems of the cardiac muscle cell to the dyad and the cytosol. This process can be described using a
Markovmodel and an associated equation which keeps track of the dyadic calcium concentration. Mutations
of interest are modeled by changing the rates of the Markov models, [16–19]. In particular, we will use the
concept of the mutation severity index (see [20]) to express the magnitude of the mutations. In addition to
being ideal for modeling channel mutation, Markov models are also very well-suited to represent the effects
of drugs on the channels [21, 23, 31–33]; models can be used to assess the quality of existing drugs and to
give indications of how drug properties might be changed to obtain improved efficiency. Analysis of channel
properties can be done using Monte Carlo simulations, essentially amounting to running a huge number of
simulations and then computing the average dynamics of concentration. A much more elegant and power-
ful method is available: the PDF of the states of the Markov model can be computed by solving a system of
PDE [20, 28, 29, 34–36]. This method can be applied when the Markov model is extended to account for drug
effects and represents a powerful tool for both analyzing the effect of existing drugs and looking for improved
drugs.
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Figure 1: A three state Markov modelMarkov model including three possible states: open (O), closed (C), and inactivated (I).

Generally, it is desirable to use a drug to reduce the effect of a mutation. Therefore, we aim at tuning
the parameters of a given drug such that the drugged channel behaves as close as possible to the wild-type
channel. Moreover, we use the distance to the wild type solution as a way of measuring the quality of a given
drug, as detailed below.

2.1 A simple Markov model

The simplest possible Markov model takes the form

C
koc
�
kco
O, (1)

where koc and kco are reaction rates. The rate koc express the likelihood that a channel changes state from
open to closed during a brief time interval. Similarly, the rate kco is the likelihood for a closed channel to
become open during a given small interval of time. This can be expressed more formally by letting S = S(t)
denote a random variable representing the state of the channel (either closed C or open O) at time t. With this
notation, the transition rates koc and kco give the probability of changing state during the small time interval
∆t :

koc∆t = Prob
[︀
S(t + ∆t) = C | S(t) = O

]︀
and

kco∆t = Prob
[︀
S(t + ∆t) = O | S(t) = C

]︀
,

As shown below, these rates prove very useful as tools to manipulate properties of the Markov model (1).

2.1.1 A Markov model with three states

The concept of aMarkovmodel is easily extended to situationswhere it is natural to includemanymore states
in themodel. On example is given in Figure 1, where aMarkovmodelwith three states is given. HereO denotes
the open state, C is the closed state, and I is an inactivated state. In our analysis of applications below, we
will address much more complex Markov models involving many states.

2.2 The master equation

From the Markov model (1), it is well-known [6, 7] that a master equation can be derived which governs the
probability of being in the open or closed state (see e.g. [20, 28, 37]). If we assume that the rates koc and kco
are constant, the master equation for the simple model (1) then takes the form

o′(t) = kcoc(t) − koco(t) (2)

c′(t) = koco(t) − kcoc(t). (3)
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By using the fact that the probabilities must add up to one, o(t) + c(t) = 1, this 2 × 2 system can be reduced to
a scalar ordinary differential equation. Similarly, the master equation of the three-state model illustrated in
Figure 1 can be written on the form

o′ = kio i + kcoc − (koi + koc) o,

c′ = koco + kic i − (kco + kci) c, (4)

i′ = koio + kcic − (kio + kic) i.

Again, the system size can be reduced from 3 × 3 to 2 × 2 by using the fact that the probabilities must sum to
one.

2.3 The equilibrium solution

It is instructive to consider the equilibrium solution of these models. In the simple 2 × 2 model (1), the equi-
librium probabilities are characterized by the following equation

kcoc = koco.

As probabilities add up to one, we find that

o = kco
kco + koc

and c = koc
kco + koc

. (5)

For the 3 × 3 model given in Figure 1, the equilibrium solution is characterized by the equations

kcoc = koco, koio = kio i, kic i = kcic. (6)

Again, since o + c + i = 1, we find that

o = 1
1 + koc

kco +
koi
kio

, c =
koc
kco

1 + koc
kco +

koi
kio

, i =
koi
kio

1 + koc
kco +

koi
kio

. (7)

2.3.1 Detailed balance

It follows from the equilibrium conditions (6) that the rates of the Markov model must satisfy the condition

kcokoikic = kcikiokoc . (8)

This relation is referred to as the condition of detailed balance, see e.g. [37].

2.3.2 Mean open time

Themean open time of the channel is determined by the rates leaving the open state; see e.g. [20, 28]. Specif-
ically, for the 2 × 2 model (1), the mean open time is given by

τo =
1
koc

, (9)

and for the 3 × 3 model illustrated in Figure 1, the mean open time is given by

τo =
1

koc + koi
. (10)
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2.4 The mutation severity index

As previously noted, mutations may significantly change ion channel properties and this effect can often be
modeled by changing the state transition rates of the Markov model (see e.g. [16]). In the simplest case, the
effect of a mutation might be to increase the closed to open rate, resulting in the Markov model,

C
koc
�
µkco

O, (11)

where µ is referred to as themutation severity index. Here, µ = 1 is the wild type case; for µ > 1, the rate from
close to open is increased. Note that for the mutation, the equilibrium open probability is given by

oµ =
µkco

µkco + koc
= 1
1 + koc

µkco

, (12)

so clearly, oµ approaches 1 as µ →∞.
The mutation modeled by (11) does not affect the mean open time, but a mutation affecting the rate from

the open to the closed state will. For instance, if the mutation increase the rate from O to C, we get a Markov
model of the form

C
µkoc
�
kco

O, (13)

with equilibrium open probability given by

oµ =
1

1 + µkoc
kco

, (14)

and the mean open time is given by
τo =

1
µkoc

. (15)

For this mutation, we note that as µ →∞, the equilibrium open probability goes to zero and thus so does the
mean open time.

2.5 Markov models of drug effects

Markov models have been applied successfully to model the effects of various drugs; see e.g. [20, 21, 23, 31–
33, 38]. A schematic of the modeling approach is illustrated in Figure 2; a new drugged state, D, is included
in the model. This state may be either conducting (open, DO) or non-conducting (closed, DC). Suppose, for
instance, that we consider the model (11) and we want to improve the properties of the channel by a drug
associated to the closed state as follows

DC
kcd
�
kdc
C

koc
�
µkco

O. (16)

Clearly, the properties of the drug are given by the rates kdc and kcd. By following the steps outlined above,
we find that the open probability in the presence of the drug is given by

oµ,d =
(︂
1 + kockco

1
µ

(︂
1 + kcdkdc

)︂)︂−1
. (17)

From (5) we have that the equilibrium open probability of the wild type channel is given by

o =
(︂
1 + kockco

)︂−1
. (18)

By comparing the formulas (17) and (18) for the open probabilities, we find that the drug can repair the equi-
librium open probability of the mutant case completely if we choose the rates of the drug such that

1
µ

(︂
1 + kcdkdc

)︂
= 1, (19)
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Figure 2: Gating of the sodium channel From left to right: 1) The gate of the channel is closed (the Markov model is in the
closed state) and no sodium ions will pass through the channel. 2) The gate is open (the Markov model is in the open state)
and sodium flows freely through the channel. 3) A drug is used to closed the channel (the Markov model is in a non-conducting
state). 4) A drug is used to open the channel (the Markov model is in a conducting state). The figure is based on a figure in [32].

Cytosol, c0 Dyadic cleft, x̄(t) Sarcoplasmic reticulum (SR), c1

Figure 3:Model of calcium concentration The calcium concentration c1 of the sarcoplasmic reticulum (SR) is assumed to be
very large and constant. A channel is located between the SR and the dyadic cleft. The channel can be open or closed, depend-
ing on the state of the Markov model. When the channel is open, calcium flows into the dyadic cleft because of the concen-
tration gradient. Furthermore, calcium diffuses from the dyadic cleft to the cytosol. The cytosolic space is assumed to be very
large and therefore the concentration is assumed to be constant (c0).�

or
kcd
kdc

= µ − 1. (20)

Any drug that satisfies the relation as defined above will completely repair the equilibrium open probability
of the channel with respect to wild type function. Furthermore, in the case of µ = 1 (wild type), the optimal
drug is actually no drug: kcd = 0, providing reassuring evidence of the method’s reasonableness.

2.6 Stochastic model of calcium concentration

We will now use the Markov models introduced above to analyze a prototype model of stochastic release of
calcium from an intracellular storage system of the cardiac muscle cell. A sketch outlining the model is given
in Figure 3, and the associated stochastic model of the calcium concentration x̄ = x̄(t) of the dyadic cleft is
given by

x̄′(t) = 𝛾̄(t)vr(c1 − x̄) + vd(c0 − x̄). (21)

Here, the first term on the right hand side models influx of calcium from the SR to the intracellular space; 𝛾̄ is
a stochastic variable governed by a Markov model. It is assumed to take on two possible values; 𝛾̄ = 1 when
the channel is open, and 𝛾̄ = 0 when the channel is closed. When the channel is open, vr denotes the speed
of the release. Finally, vd denotes the speed of diffusion from the dyadic cleft to the cytosol. The properties of
(21) can be analyzed byMonte Carlo simulation; the results of repeated runs can be added in order to estimate
the probability density functions of the states of the Markov model. These probability density functions can,
however, also be computed by direct solution of a deterministic system of partial differential equations.
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2.7 Probability density functions

A powerful way of analyzing the calcium dynamics governed by the stochastic model (21) is to compute the
probability density function of the states of the Markov model directly. We consider the Markov model (1)
and the stochastic model (21), and we let ρo = ρo (x, t) denote the probability density functions (PDFs) of the
channel in an open state; similarly, ρc = ρc (x, t) denotes the PDFs of the channel being in a closed state.
Now, the probability of the channel being open and the concentration x̄ = x̄(t) being in the interval (x, x+∆x)
at time t is given by

Po
{︀
x < x̄(t) < x + ∆x

}︀
=

x+∆x∫︁
x

ρo (ξ , t) dξ . (22)

Similarly, we have

Pc
{︀
x < x̄(t) < x + ∆x

}︀
=

x+∆x∫︁
x

ρc (ξ , t) dξ . (23)

Following [20, 27, 28], we find that the PDFs are governed by the following linear system of partial differential
equations,

∂ρo
∂t + ∂

∂x (aoρo) = kcoρc − kocρo , (24)

∂ρc
∂t + ∂

∂x (acρc) = kocρo − kcoρc , (25)

with boundary conditions
∂ρo
∂n = ∂ρc∂n = 0

on either end, and where

ao(x) = vr(c1 − x) + vd(c0 − x), (26)
ac(x) = vd(c0 − x).

2.7.1 Numerical solution

The problem (24,25) can be solved using well know numerical methods. Our approach (see [20]) to the prob-
lem is to write the system on the form

ρt + (Aρ)x = Kρ (27)

with,

ρ =
(︃
ρo
ρc

)︃
, A =

(︃
ao 0
0 ac

)︃
, and K =

(︃
−koc kco
koc −kco

)︃
. (28)

When the system iswritten on this form, it canbe solvedusingoperator splitting (see e..g. [39–41]). The system
will then be solved in two steps; one step solves the hyperbolic and space dependent part, and the second
step solves a system of ordinary differential equations.

Let ρn be the solution at time tn = n∆t. Then, the first step is to solve the hyperbolic system

ρt + (Aρ)x = 0 (29)

from t = tn to t = tn + ∆t. For the second step, we use this solution to define the initial condition; u(tn) =
ρ(tn+1), and solve the ordinary differential equations given by

ut = Ku (30)

from t = tn to t = tn + ∆t. Finally, we update the solution by defining

ρn+1 = u(tn+1). (31)
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The problem of solving the system (24,25) is now reduced to solve a standard, linear hyperbolic problem
and to solve a system of ordinary differential equations. In addition, the system of hyperbolic equations de-
couples completely and consists of two, scalar equations that can be solved separately. Numerical methods
for hyperbolic problems is covered in [39], and numericalmethods for solving systems of ordinary differential
equations can be found most textbooks on numerical methods; see e.g. [42, 43].

2.8 Probability density functions for a three state model

The system above governing the PDFs of the open and closed states can, in principle, be extended to cover
any Markov model. In order to indicate how to generalize the system , we consider the Markov model given
in Figure 1 and note that the PDFs are governed by the system (see [20], ch. 11)

∂ρo
∂t + ∂

∂x (aoρo) = kcoρc − (koc + koi)ρo + kioρi , (32)

∂ρc
∂t + ∂

∂x (acρc) = kocρo − (kco + kci)ρc + kicρi , (33)

∂ρi
∂t + ∂

∂x (acρi) = koiρo − (kio + kic)ρi + kciρc , (34)

where ao and ac are given by (26).

2.8.1 Probability density functions in the presence of a drug

The PDF can also be computed for the Markov model (16). In this case the probability density functions are
governed by the system

∂ρo
∂t + ∂

∂x (aoρo) = µkcoρc − kocρo , (35)

∂ρc
∂t + ∂

∂x (acρc) = kocρo − (µkco + kcd) ρc + kdcρd , (36)

∂ρd
∂t + ∂

∂x (acρd) = kcdρc − kdcρd , (37)

where, again, ao and ac are given by (26).

3 Applications of models and methods
In this section, we will use the described to demonstrate how optimal properties of theoretical compounds
can be computed via drug model parameter tuning. We will first consider a generic two-state Markov model
and show theoretically that the effect of amutation can be repaired completely. Next, we consider a two-state
Markov model of the cardiac ryanodine receptor (RyR2) channel. This model is easily extended to describe
the theoretical application of a drug. Finally, to show that the outlined methods will generalize well to more
complex Markov channel models, we will consider an eight-state Markov model of the fast sodium channel
and use the developed framework for computing optimal drugs.

3.1 Example: a two-state Markov model as the simplest possible case

We illustrate the methods described above for a very simple, generic case. Consider the two-state Markov
model (1) and the associated system of partial differential equations (PDEs) (24,25) governing the probability
density functions (PDFs) of the open and closed states. As mentioned above, the PDFs can be computed by
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Table 1: Parameters of the models (1) and (21).�

vd 0.1ms−1

vr 1ms−1

c0 0.1 µM
c1 1000 µM
kco 0.2ms−1

koc 1ms−1

performing a large number of Monte Carlo (MC) simulations based on themodel (21), or by solving the system
(24,25). In Figure 4, we show the stationary solutions using these two methods; the histograms represent the
MC solutions, and the solid green lines represent the PDFs computed by solving (24,25). The parameters used
in computation are given in Table 1. Numericalmethods for solving the system (24,25) is discussed above, and
details of how to compute the histograms are given in [20]. In the figure, we observe that the MC simulations
(histograms) and the solution of the system of PDEs (solid lines) provide the same solution, and that the
introduced mutation leads to increased open probability.

3.1.1 The effect of the mutation and its reversal with application of a theoretical drug

In the Markov model (11), we introduced the effect of a mutation; the effect of a closed state drug was added
in (16). Furthermore, the system modeling the PDFs of the states are given in (35)-(37). In Figure 5, we show
the stationary solutions of the wild type channel (green), the mutated channel (red) and the mutation after
the application of the drug (blue; three versions). In the computations of the drugged case, drug parameters
satisfy (20), i.e. we have used kcd = (µ − 1)kdc for three versions of the parameter kdc. We note that the drug
works with improved efficacy as the value of kdc increases; in fact, it can be shownmathematically (see [20],
page 63) that as kdc →∞, the PDF of the open state for the mutant channel converges to the PDF of the wild
type channel and thus, asymptotically, the channel is perfectly repaired.

3.2 Mutation in the cardiac ryanodine receptor affecting calcium release

Next, we consider the simple two-state Markov model of Cannell et al. [44] to model a catecholaminergic
polymorphic ventricular tachycardia (CPVT) mutation in the cardiac ryanodine receptor (RyR2) channel. In
particular, we use data fromZhao et al. [45] to define amodel of the CPVTmutation RyR2-A4860G that reduces
channel open probability. The Markov model takes the form

C
kco
�
µkoc

O
kod
�
kdo
DO (38)

where the rates depend on the dyadic calcium concentration c;

kco(c) = k−co +
k+co − k−co

1 + (c/c̄co)sco
,

and
koc(c) = k−oc +

k+oc − k−oc
1 + (c/c̄oc)soc

.

In the Cannell et al. model [44] these rates are only piecewise smooth, while here we have reparameterized
them to obtain globally smooth rates. The parameters are given in Table 2. The stochastic equation governing
the calcium concentration is given by

dc
dt = 𝛾(t)gRyR(c1 − c) + gL(c0 − c) (39)
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Figure 4: Probability density functions vs. Monte Carlo distributions Upper left panel: The probability density function of the
open state for a wild type channel, computed by solving the system of partial differential equations (35)-(37) (solid green line),
and the solution computed by repeated Monte Carlo simulations (histogram). Upper right panel: The probability density func-
tion of the non-conducting (closed) state. Lower panels: The mutant case. In the computations we have used mutation severity
index µ = 3.�
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Figure 5:Wild type, mutant and drug effect The probability density functions for the wild type (green) channel, mutant channel
(red) and the mutant channel + drug (blue), of the open (left) and the non-conducting (closed) states (right), computed by solv-
ing the system of partial differential equations. Three versions of the drug are used (blue lines), defined by kdc = 0.1, 1, 10 and
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Table 2: Parameters of the Markov model (38).�

k−co 1 · 10−3ms−1 k−oc 1ms−1

k+co 0.5ms−1 k+oc 10ms−1

c̄co 50µM c̄co 50µM
sco -3 sco 1

where gL = 0.1ms−1, gRyR = 0.1ms−1, c0 = 1µM, c1 = 1000µM, and finally 𝛾 = 𝛾(t) is zero or one, depending
on the state of the Markov model as explained in Methods.

3.2.1 Characterizing optimal drugs using probability density functions

The system governing the PDFs of the O, C and DO states takes the form

∂ρo
∂t + ∂

∂x (aoρo) = kcoρc − (µkoc + kod) ρo + kdoρd , (40)

∂ρc
∂t + ∂

∂x (acρc) = µkocρo − kcoρc , (41)

∂ρd
∂t + ∂

∂x (aoρd) = kodρo − kdoρd . (42)

Since both the O and the DO states are open (conducting), we can define the combined open probability
density function

ρ* = ρo + ρd .

By adding (40) and (42) we find that the the PDFs ρ* and ρc are governed by the system

∂ρ*
∂t + ∂

∂x (aoρ*) = kcoρc − µkocρo (43)

∂ρc
∂t + ∂

∂x (acρc) = µkocρo − kcoρc , (44)

It is useful to define
α = kodkdo

and observe that (42) can be written on the form

1
kdo

(︂
∂ρd
∂t + ∂

∂x (aoρd)
)︂
= αρo − ρd .

If we assume that the drug kdo rate is very fast, we have ρd ≈ αρo , and therefore

ρ* = ρo + ρd ≈ (α + 1) ρo ,

so we can rewrite the system (43) − (44) on the form

∂ρ*
∂t + ∂

∂x (aoρ*) = kcoρc −
µ

α + 1 kocρ* (45)

∂ρc
∂t + ∂

∂x (acρc) =
µ

α + 1 kocρ* − kcoρc , (46)

If we choose α such
µ

α + 1 = 1
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we observe that the system (45) − (46) is identical to the system governing the wild type PDFs,

∂ρo
∂t + ∂

∂x (aoρo) = kcoρc − kocρo (47)

∂ρc
∂t + ∂

∂x (acρc) = kocρo − kcoρc , (48)

and therefore the drug repairs the mutant channel completely, theoretically, provided that the rates are very
fast and

kod = (µ − 1) kdo . (49)

3.2.2 Numerical simulations

In Figure 6, we show the PDFs of the open and non-conducting states for the wild type channel (green), the
mutant channel (no drug, red), and mutant channel after the drug is applied (blue). Again, we note that the
solutions computed by doing repeated Monte Carlo simulations (histograms) and solving the deterministic
systemofPDFs (solid lines) provide very similar solutions. Furthermore,we see that themutation significantly
decreases open probability and increases the probability of being in the closed state. The introduction of the
drug seems to repair the effect of the mutation i.e. restores open probability of the channel, approximating
wild type channel behavior. In the numerical computation, we have used the mesh size ∆c = 0.057µM, and
the time step used in solving (39) was ∆t = 1µs.

In Figure 7, we show the solution of the system (40)-(42) for three values of the drug parameters; kdo =
0.1, 1, 10, and kod = (µ − 1) kdo. As expected, as the rates increase, the solution of the mutant channel +
drug behaves similarly to the wild type solution.

The Markov model (38) was implemented to handle the RyR-release in the whole cell model presented
in Chapter 15 of [20]. The results are given in Figure 8. We note that the mutation significantly affects the
dyadic calcium concentration, and that the effect of the mutation is predominantly removed when the drug
is applied.

3.3 Model of calcium release depending on both ci and cs

Next, we consider the two-state Markov model for the ryanodine receptor, RyR from [46]:

C
µkco
�
koc

O (50)

where the transition rates depend on both the dyadic calcium concentration, ci, and the sarcoplasmic retic-
ulum (SR) calcium concentration, cs:

kco(ci , cs) = k+(ϕb + (cs/ϕk)4)c
η
i

and
koc = k−.

The constants are given in Table 3.
The stochastic equations governing the calcium concentrations are given by

dci
dt = 𝛾(t)gRyR(cs − ci) + gL(c0 − ci) (51)

dcs
dt = 𝛾(t)gRyR(ci − cs) + gF(c1 − cs) (52)

where gF = 0.1, gL = 0.1ms−1, gRyR = 0.1ms−1, c0 = 0.1µM, c1 = 1000µM, and finally 𝛾 = 𝛾(t) is zero or one
depending on the state of the Markov model.
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Figure 6: Probability density functions and Monte Carlo distributions Probability density functions of the open and non-
conducting states for the wild type channel (upper), mutant channel (middle) and mutant channel + drug (lower). In the sim-
ulations we have used µ = 1.5, kod = 10ms−1and kdo = 20ms−1.�
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Figure 7:Wild type, mutant and drug The probability density function of the open states (ρo + ρd, left) and the non-conducting
(closed) state (right). Three rates are used kdo = 0.1, 1, 10, and kod = (µ − 1) kdo.�

0 50 100 150
time (ms)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[C
a]

 (
M

)

WT
MUT
MUT+DRG

70 80 90 100 110 120
time (ms)

0.62

0.64

0.66

0.68

0.7

0.72

[C
a]

 (
M

)

Figure 8: Calcium transient Whole cell simulation using the RyR release model given by (38). At left: The calcium concentration
of the dyad for the wild type channel, mutant channel and mutant channel + drug. In the simulations, we have used kod =
1, kdo = 2. Right: Zooming in on the time interval ranging from 60 to 120ms; we note the even for these slow rates, the drug
almost completely repairs the calcium concentration in the dyad.�

Table 3: Parameters of the Markov model from Walker et al [46].

k− 0.5ms−1

k+ 1.107 · 10−4ms−1−1µM−η

ϕk 1.5mM
ϕb 0.8025
η 2.1
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The corresponding PDF system is:
∂ρo
∂t + ∂

∂ci
(︀
acio ρo

)︀
+ ∂
∂cs

(︀
acso ρo

)︀
= kcoρc − kocρo , (53)

∂ρc
∂t + ∂

∂ci
(︀
acic ρc

)︀
+ ∂
∂cs

(︀
acsc ρc

)︀
= kocρo − kcoρc , (54)

where

acio = gRyR (cs − ci) + gL (c0 − ci) ,
acso = gRyR (ci − cs) + gF (c1 − cs) , (55)
acic = gL (c0 − ci) ,
acsc = gF (c1 − cs) .

3.3.1 1D Numerical simulations
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Figure 9:Wild type, mutant and two drugs The numbers in dr1 and dr10 refer to the values of kbc . �

First, we keep cs fixed, reducing the PDF computation to a 1D problem. Figure 9 shows the solution for
t = 3ms. In this example, the mutation is causing an increased opening rate, represented with the mutation
index µ > 1:

kco,µ = µkco
For the drug to repair the steady state, we know the rates should satisfy:

kcb = (µ − 1)kbc

Furthermore, the larger the rates, the more closely we can approximate the wild type channel behavior with
application of a theoretical drug. As expected kbc = 10 is superior to kbc = 1.

3.3.2 2D Numerical simulations

In Figure 10we show the solution of the 2D problem defined in (53)-(55), at t = 3ms. Note that themutant case
(right panel) has a higher peak in open probability, and is wider compared to the wild type channel case (left
panel). Figure 11 shows the effect of the applied drug. With kbc = 10 the error becomes less than 4% (lower
panel).
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Figure 10: 2D probability density functions Solution of the problem defined in (53)-(55). Left: Wild type channel. Right: Mutant
channel.�

3.4 The sodium channel

Table 4: The rate functions of the sodium channel model are taken from [16].�

Wild type Mutant

α1i = 3.802
0.1027·e−V/p1i+p2i ·e−V/150

p11 = 17 α̂1i = 1.25 · α1i
β1i = p3i · e−V/20.3 p12 = 15 β̂1i = β1i
α2 = 9.178 · eV/29.68 p13 = 12 α̂2 = 9.178 · eV/100

β2 = α13·α2·α3
β13·β3 p21 = 0.20 β̂2 = α̂13·α̂2·α̂3

β̂13·β̂3
α3 = 3.7933 · 10−9e−V/5.2 p22 = 0.23 α̂3 = 20 · α3
β3 = 0.0084 + 0.00002V p23 = 0.25 β̂3 = 2 · β3
α4 = α2/100 p31 = 0.1917 α̂4 = α̂2/100
β4 = α3 p32 = 0.2552 β̂4 = α̂3

p33 = 0.3583 α̂0 = 2 · 10−6

β̂0 = 1 · 10−4

The first mathematical analysis of amutation using aMarkovmodel to represent the state of an ion chan-
nel was conducted by Clancy and Rudy, published in their seminal paper [16]. This Markov model was pa-
rameterized using data from Bennett et al. [48] and Chandra et al. [49]. The model represents the effect of
the ∆KPQ mutation of the SCN5A gene of fast sodium channels. This mutation can lead to a characteristic
late current, causing prolongation of the QT-interval; see e.g. [16]. In [23], Clancy, Zhu and Rudy introduced
Markov models incorporating the effect of a variety of drugs. Theoretical analysis of potential pharmacother-
apies was also analyzed in [50]. A key component of the Markov model presented by Clancy and Rudy is the
burst mode. The Markov model is presented in Figure 12; we note that in the wild type case (upper panel),
there are six states; one open state, two inactivated states and three closed states. In the mutant case, how-
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Figure 12: The Markov model of Clancy and Rudy [16]. Upper panel: The wild type channel model with six states; one open
state (O), two inactivated states (IF, IS) and three closed states (C1, C2, C3). Lower panel: The mutant channel model is similar
top the wild type channel model, but a burst mode is added involving one new open state and three new closed states. In the
mutant model, drugs are included using the formalism proposed by Clancy, Zhu and Rudy [47]. The drug states are denoted
IB, UB and LB, and the rates are given in blue.�

ever, (Figure 12, lower panel) a burst mode is added to the model; this burst mode has no inactivated states,
meaning that the channel open probability increases slightly, which can lead to a characteristic late sodium
current. Following Clancy et al. [23], we have introduced drugs associated with the open state and the inac-
tivated states; see Figure 12, where reaction rates defining the drug appear in blue. The rates of the Markov
model are given in Table 4.

3.4.1 Probability density functions

The transmembrane potential of a single sodium channel is governed by

dv
dt = 𝛾gNa(v0 − v) + gL(v1 − v), (56)

where gL = 0.1ms−1, gNa = 1ms−1, v0 = 40mV, v1 = -85mV, and, as above, the stochastic function 𝛾 is zero or
one depending on the state of the Markov model. For the Markov models given in Figure 12, 𝛾 is one when
the Markov model is in the state O for the model in the upper panel, and in the state UO or LO for the model
given in the lower panel.
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As explained in further detail in [20], we can formulate a system of partial differential equations (PDEs)
modeling the probability density functions (PDFs) of the states of the Markov model;

∂ρO
∂t + ∂

∂v (aoρO) = β2ρIF + α13ρC1 − (α2 + β13) ρO , (57)

∂ρIF
∂t + ∂

∂v (acρIF) = α2ρO + α3ρC1 + β4ρIS − (α4 + β2 + β3) ρIF , (58)

∂ρIS
∂t + ∂

∂v (acρIS) = α4ρIF − β4ρIS , (59)

∂ρC1
∂t + ∂

∂v (acρC1) = β13ρO + β3ρIF + α12ρC2 − (α3 + α13 + β12) ρC1, (60)

∂ρC2
∂t + ∂

∂v (acρC2) = β12ρC1 + α11ρC3 − (α12 + β11) ρC2, (61)

∂ρC3
∂t + ∂

∂v (acρC3) = β11ρC2 − α11ρC3, (62)

where
ao = ao(v) = gNa(v0 − v) + gL(v1 − v),

and
ac = ac(v) = gL(v1 − v).

Similarly, we can formulate at 13 × 13 system of PDEs modeling the PDFs of the Markov model given in the
lower panel of Figure 12. Again, we refer to [20] for boundary conditions and numerical methods for solving
the presented system. In Figure 13, we show the solution of this system of partial differential equations for the
wild type channel, themutant channel, and themutant channel after a drughas been applied. The theoretical
drug has been computed by minimizing the cost functional

J(d) = ||ρ* − ρ(d)||2/||ρ*||2 (63)

where ρ* is the wild type channel open probability distribution at T = 10ms, and ρ(d) is the corresponding
mutant channel distribution with the drug d applied. The best drug rates were identified by minimizing J =
J(d) at time t = 10ms (Fminsearch, Matlab). The optimal solution was found to be

(d1, d2, d3, d4) = (0.015869, 3.4938 · 10−9, 55.525, 0.14337)/ms.

The numerical solution was computed using a mesh with ∆V = 0.574mV and time step 5µs.
The results given in Figure 13 show that the open probability is much larger in the mutant case than in

for the wild type case, as expected. This effect can be almost completely repaired by the optimal theoretical
drug, as shown.

3.4.2 Whole cell action potential

The PDF of the open state of the mutant sodium channel can be restored almost completely to its wild type
phenotype by applying an optimal theoretical drug. Next, we will show how this theoretical therapy nor-
malizes a whole cell action potential affected by the sodium channel mutation. We used the action potential
model of Livshitz and Rudy [51] and applied the Markov model given in Figure 12 to represent the sodium
channel. In Figure 14, we show the resulting action potential (left panel) and the associated sodium current
(right panel). The characteristic late current of the ∆KPQmutation is almost completely abolished by the the-
oretical drug, and, as a result, the undesired, excess depolarization of the whole cell action potential seen
in the case of the mutant sodium channel is removed; the action potential of the mutant channel + drug is
almost identical to the phenotype of the wild type channel case.
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Figure 13:Wild type, mutant and drug Probability density functions at time t = 10ms of the open states for the wild type chan-
nel, mutant channel and mutant channel + optimal drug. The system (57)-(62) of partial differential equations gives the wild
type solutions, whereas the the solutions mutant channel + drug case is defined by a 13 × 13 system of partial differential
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Figure 14: Action potential and sodium current Action potential (left panel) computed using the Livshitz and Rudy model [51] for
the wild type channel, mutant channel and mutant channel + drug cases; the associated sodium currents are given in the right
panel. The sodium channels are represented by the Markov model given in Figure 12.�
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Table 5: The table gives rates applied in computations presented in Figure 15 and Figure 16. For the improved versions of lido-
caine and mexiteline, we have used:
MEX:∇J = (−1.0004, 128.49), ϵ = −1.945608 · 10−3.
LID:∇J = (−0.087658, 14.676), ϵ = −2.682 · 10−2.

d1 d2 d3 d4 J(d)
WT - - - - 0
MUT - - - - 663.62
MEX 100 0.25 - - 125.49
MEX* 100 3.9634 · 10−6 - - 0.5465
LID - - 100 0.4 14.713
LID* - - 100 0.1064825 0.11378
OPT 0.015869 3.4938 · 10−9 55.525 0.14337 0.0974012

3.5 Comparing existing and theoretical drugs

Several existing drugs for the sodium channel have been characterized using Markovmodels; see e.g. [23]. In
Figure 15, we compare the open probability density function of these existing drugs with the theoretical drug
derived in the previous section. In summary, we note that both lidocaine and mexiteline are able to improve
the sodium channel open probability density functions, but not nearly aswell as the optimal theoretical drug.
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Figure 15:Wild type, mutant and three drugs Left panel: Wild type channel, mutant channel, and mutant channel + three differ-
ent theoretical drugs (optimal, lidocaine and mexiteline). Right panel: Zoom of left panel. The rates of lidocaine and mexiteline
are given in Table 5.

3.6 Improving existing drugs

A major challenge for translational applicability of theoretical drugs computed by the method introduced
above is that we do not know whether it is physically possible to produce a drug with these properties given
current drug development pipelines and technological limitations. However, it is potentially tractable to con-
struct a drug with properties close to those of an existing drug, and we therefore show how the machinery
developed above can be used to suggest improvements to a known drug. Suppose the rates of an existing drug
are given by the vector d*. Then the associated cost functional is given by J(d*) and we want to reduce this
value by perturbing the rates d*; we want to find a drug D = d* + d. This can be done by applying a gradient
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method to reduce the cost function. More specifically, the Taylor series expansion of the cost function reads

J(D) = J(d* + d) = J(d*) +∇J(d*) · d + O(‖d‖2),

and we therefore choose
d = −ε∇J(d*)

where ε is a positive parameter. With this choice, we note that

J(D) = J(d* + d) ≈ J(d*) − ε∇J(d*) ·∇J(d*) < J(d*)

and we therefore expect D = d* + d to be a better drug than d* if ε is small.
The effect of this procedure is illustrated in Figure 16. We show the open probability density functions

of the wild type channel, the mutant channel and the mutant channel treated with improved versions of
lidocaine and mexiteline. All rates are given in Table 5. We note that the improved versions of lidocaine and
mexiteline work significantly better than the originals. Note that suggested improvements are very specific;
e.g. for lidocaine we suggest that the rate d3 is kept as it is and that the rate d4 is reduced by a factor of 4.
Similarly, for mexiteline, the rate d1 should be kept as it is, but the rate d2 should be reduced as much as
possible. However, we do not know if it possible to construct drugs with these properties.
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Figure 16: Improving existing drugs Right: The improved versions of lidocaine and mexiteline work well and are much improved
from the original; the rates applied are given in Table 5.

4 Conclusion
In summary, we have reviewed the development of mathematical methods for analyzing single channel flow
of ions using Markov models in conjunction with stochastic differential equations. The Markov models are
ideally suited to represent both the wild type channel, channels that are affected by amutation and the effect
of a drug on amutant channel. Deterministic PDEs describing the PDFs of the states of theMarkovmodelwere
introduced, as were the numerical and analytical techniques needed to study these. We have shown how the
PDFs can be used to derive optimal theoretical drugs that can completely repair the effect of a mutation and
restore function to that of the wild type channel in the case of mutations affecting both internal calcium
release and sodium kinetics at the membrane in models of cardiomyocytes. We also discuss how theoretical
methods of this type may be related to existing therapies in future work. Finally, we would like to reiterate
that our results are theoretical indications of what properties would be favorable for drugs, but we do not
know if drugs with these properties can actually be produced.
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