This paper studies the Stokes system -Δ𝐮+∇ρ=𝐟{-\Delta{\mathbf{u}}+\nabla\rho={\mathbf{f}}}, ∇⋅𝐮=χ{\nabla\cdot{\mathbf{u}}=\chi} in Ω with three boundary conditions: 𝐧⋅𝐮=𝐧⋅𝐠,\displaystyle{\mathbf{n}}\cdot{\mathbf{u}}={{\mathbf{n}}\cdot\mathbf{g}},𝐧×(∇×𝐮)=𝐧×𝐡\displaystyle{\mathbf{n}}\times(\nabla\times{\mathbf{u}})={\mathbf{n}}\times{% \mathbf{h}}on ∂Ω,\displaystyle\phantom{}\text{on }\partial\Omega,𝐧⋅𝐮=𝐧⋅𝐠,\displaystyle{\mathbf{n}}\cdot{\mathbf{u}}={\mathbf{n}}\cdot\mathbf{g},𝝉⋅[∂𝐮∂𝐧-ρ𝐧+b𝐮]=𝐡⋅τ\displaystyle{\boldsymbol{\tau}}\cdot\bigg{[}\frac{\partial{\mathbf{u}}}{% \partial{\mathbf{n}}}-\rho{\mathbf{n}}+b{\mathbf{u}}\bigg{]}={\mathbf{h}}\cdot\tauon ∂Ω,\displaystyle\phantom{}\text{on }\partial\Omega,𝐧⋅𝐮=𝐧⋅𝐠,\displaystyle{\mathbf{n}}\cdot{\mathbf{u}}={{\mathbf{n}}\cdot\mathbf{g}},[T(𝐮,ρ)𝐧+b𝐮]⋅τ=𝐡⋅τ\displaystyle[T({\mathbf{u}},\rho){\mathbf{n}}+b{\mathbf{u}}]\cdot\tau={% \mathbf{h}}\cdot\tauon ∂Ω.\displaystyle\phantom{}\text{on }\partial\Omega. Here Ω is a bounded simply connected planar domain. We find a necessary and sufficient condition for the existence of a solution in Sobolev spaces Ws,q(Ω;ℝ2)×Ws-1,q(Ω){W^{s,q}(\Omega;{\mathbb{R}}^{2})\times W^{s-1,q}(\Omega)}, with 1+1/q<s<∞{1+1/q<s<\infty}, in Besov spaces Bsq,r(Ω;ℝ2)×Bs-1q,r(Ω){B_{s}^{q,r}(\Omega;{\mathbb{R}}^{2})\times B_{s-1}^{q,r}(\Omega)}, with 1+1/q<s<∞{1+1/q<s<\infty}, and classical solutions in 𝒞k,α(Ω¯,ℝ2)×𝒞k-1,α(Ω¯){{\mathcal{C}}^{k,\alpha}(\overline{\Omega},{\mathbb{R}}^{2})\times{\mathcal{C% }}^{k-1,\alpha}(\overline{\Omega})}, with 0<α<1{0<\alpha<1}, k∈ℕ{k\in{\mathbb{N}}}.